分析
书接上文
修改push()似乎并不困难:在函数末尾加上对data_cond.notify_one()的调用即可,与代码清单1(第一篇文章)一样。事情其实没那么简单,我们之所以采用精细粒度的锁,目的是尽可能提高并发操作的数量。如果在notify_one()调用期间,互斥依然被锁住,形式与代码清单1一样,而等待通知的线程却在互斥解锁前觉醒,它就需要继续等待互斥解锁。矛盾的是,若在解锁互斥之后调用notify_one(),那么互斥已经可以再次获取,并且超前一步,等着接受通知的线程对其加锁(前提是其他线程没有抢先将其重新锁住)。这点改进看似细微,但对某些情况却有重要作用。
wait_and_pop()就复杂得多,因为我们需要确定在哪里等待、根据什么断言唤醒等待、需要锁住什么互斥等。等待唤醒的条件是“队列非空”,用代码表示为 head!=tail。
按这种写法,要求两个互斥head_mutex和 tail_mutex 都被锁住,我们分析代码清单3(第三篇文章)的时候就已经确定,只有在读取 tail 指针时才有必要锁住互斥tai_mutex,而比较运算无须保护,本例同理。若我们将断言设定为head!=get_tail(),则只需持有互斥 head_mutex,所以在调用 data_cond.wait()时,就可以重新锁住head_mutex。只要我们加入了等待的逻辑,这种实现就与 try_pop()一样。
对于try_pop()的另一个重载和对应的 wait_and_pop() 的重载,我们也要谨慎思考和设计。在代码清单3中,try_pop()函数的结果通过共享指针std::shared_ptr的实例返回,其指向目标由old_head间接从 pop_head() 取得。如果模仿代码清单1,将以上方法改为 try_pop()的第一个重载的模式,令函数接收名为value 的引用参数,再由拷贝赋值操作赋予它 old_head 的值,就可能会出现与异常有关的问题。根据这种改动,在拷贝赋值操作执行时,数据已经从队列中移除,且互斥已经解锁,剩下的全部动作就是将数据返回给调用者。但是,如果拷贝赋值操作抛出了异常(完全有可能),则该项数据丢失,因为它无法回到队列本来的位置上。
若队列模板在具现化时,模板参数采用了实际类型T,而该类型支持不抛出异常的移动赋值操作,或不抛出异常的交换操作,我们即可使用类型T。然而,我们还是更希望实现通用的解决方法,对任何类型T都有效。在上述场景中,我们需要在队列移除节点以前,将可能抛出异常的操作移动到锁的保护范围之内。也就是说,我们还需要pop_head()的另一个作用,在改动队列之前就获取其存储的值。
相比而言,empty(就很简单了:只需锁住互斥head_mutex,然后检查 head_get_tail()。
一、实现
接口
template<typename T>
class threadsafe_queue{
private:
struct node{
std::shared_ptr<T> data;
std::unique_ptr<node> next;
};
std::mutex head_mutex;
std::unique_ptr<node> head;
std::mutex tail_mutex;
node* tail;
std::condition_variable data_cond;
public:
threadsafe_queue():
head(new node),tail(head.get())
{}
threadsafe_queue(const threadsafe_queue& other)=delete;
threadsafe_queue& operator=(const threadsafe_queue& other)=delete;
std::shared_ptr<T> try_pop();
bool try_pop(T& value);
std::shared_ptr<T>wait_and_pop();
void wait_and_pop(T& value);
void push(T new_value);
bool empty();
];
压入新数据
template<typename T>{
void threadsafe_queue<T>::push(T new_value)
std::shared_ptr<T> new_data(
std::make_shared<T>(std::move(new_value)));
std::unique_ptr<node>p(new node);
{
std::lock_guard<std::mutex> tail_lock(tail_mutex);
tail->data=new_data;
node* const new_tail=p.get();
tail->next=std::move(p);
tail=new_tail;
}
data_cond.notify_one();
}
我们提过,复杂之处全在于pop()上,我们运用几个辅助函数简化操作。
template<typename T>
class threadsafe_queue{
private :
node* get_tail()
{
std::lock_guard<std::mutex> tail_lock(tail mutex);
return tail;
}
std::unique_ptr<node> pop_head()①
{
std::unique_ptr<node> old_head=std::move(head);
head=std::move(old_head->next);
return old_head;
}
std::unique_lock<std::mutex> wait_for_data()②
{
std::unique_lock<std::mutex> head_lock(head_mutex);
data_cond.wait(head_lock,[&]{return head.get()!=get_tail();));
return std::move(head_lock);③
}
std::unique_ptr<node> wait_pop_head()
{
std::unique_lock<std::mutex> head_lock(wait_for_data());④
return pop_head();
}
std::unique ptr<node> wait_pop_head(T& value)
{
std::unique_lock<std::mutex>head_lock(wait_for_data());⑤
value=std::move(*head->data);
return pop head();
}
public:
std::shared ptr<T> wait_and_pop()
{
std::unique_ptr<node> const old_head=wait_pop_head();
return old_head->data;
}
void wait_and_pop(T& value)
{
std::unique_ptr<node> const old_head=wait_pop_head(value);
}
};
这里展示出 wait_and_pop()实现代码,它含有几个辅助函数,用以简化代码和减少重复,如 pop_head()①和 wait_for_data()②。前者移除头节点而改动队列,后者则等待数据加入空队列,以将其弹出。wait_for_data()特别值得注意,它在条件变量上等待,以 lambda 函数作为断言,并且向调用者返回锁的实例③。因为 wait pop_head()的两个重载都会改动队列数据,并且都依赖wait_for_data()函数,而后者将锁返回则保证了头节点弹出的全过程都持有同一个锁④⑤。这也为里的 pop_head()和ty_pop()使用。
template<typename T>
class threadsafe_queue
private:
std::unique_ptr<node> try_pop_head()
{
std::lock guard<std::mutex> head lock(head_mutex);
if(head.get()==get_tail())
{
return std::unique_ptr<node>();
}
return pop_head();
}
std::unique_ptr<node> try_pop_head(T& value)
{
std::lock guard<std::mutex> head_lock(head_mutex)
if(head.get()==get_tail())
{
return std::unique_ptr<node>();
}
value=std::move(*head->data);
return pop_head()
}
public:
std::shared ptr<T> try_pop()
{
std::unique_ptr<node> old_head=try_pop_head();
return old_head?old_head->data:std::shared_ptr<T>();
}
bool try_pop(T& value)
{
std::unique ptr<node> const old_head=try_pop_head(value);
return old_head!=nullptr;
}
bool empty()
{
std::lock_guard<std::mutex> head_lock(head_mutex);
return(head.get()==get_tail());
}
);