首页 > 其他分享 >OpenCV 入门

OpenCV 入门

时间:2024-12-27 15:59:14浏览次数:10  
标签:入门 img imshow cv2 OpenCV np import 255

OpenCV_Python 入门

创建/显示窗口

方法说明参数返回
namedWindow创建一个窗口窗口名称,WINDOW_NORMAL(窗口属性)
resizeWindow设置窗口大小窗口名称,宽,高
imshow显示窗口窗口名称,要显示的图像
destroyAllWindows关闭所有窗口
waitKey延时监听键盘按下0无限 / 单位毫秒键盘按下键的ASCII码
import cv2

cv2.namedWindow("img",cv2.WINDOW_NORMAL)
cv2.resizeWindow("img",800,600)

while True:
    cv2.imshow("img",0)
    key = cv2.waitKey(0)
    if key & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

显示图片

方法说明参数返回
imread读取图片路径,IMREAD_GRAYSCALE(灰)/IMREAD_COLOR(彩)/其它读取到的图片资源
import cv2

while True:
    # cv2.imshow("img",cv2.imread("../1.jpg",cv2.IMREAD_COLOR))
    cv2.imshow("img",cv2.imread("../1.jpg",cv2.IMREAD_GRAYSCALE))

    key = cv2.waitKey(0)
    if key & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

保存图片

方法说明参数返回
imwrite保存图片保存的文件名称,图片资源
import  cv2

img = cv2.imread("../1.jpg",cv2.IMREAD_COLOR)

while True:
    cv2.imshow("img",img)
    key = cv2.waitKey(0)
    if key & 0xFF == ord('q'):
        break
    elif key & 0xFF == ord('s'):
        cv2.imwrite("11.png",img)
cv2.destroyAllWindows()

视频采集

方法说明参数返回
VideoCapture摄像机0(开启本机摄像头)
VideoCapture.read获取视频帧ret(读取到帧为true),frame(视频帧)
VideoCapture.release释放资源
import cv2

cv2.namedWindow("frame",cv2.WINDOW_NORMAL)
cv2.resizeWindow("frame",800,600)
cap = cv2.VideoCapture(0)
while True:
    ret,frame = cap.read()
    cv2.imshow('frame',frame)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

读取视频文件

方法说明参数返回
VideoCapture摄像机本机视频文件路径
import cv2

cv2.namedWindow("frame",cv2.WINDOW_NORMAL)
cv2.resizeWindow("frame",800,600)
cap = cv2.VideoCapture("../2.mp4")
while True:
    ret,frame = cap.read()
    cv2.imshow('frame',frame)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

视频录制

方法说明参数返回
VideoWriter_fourcc编码器*MJPG / 其它
VideoWriter视频输出文件名称,编码器,帧数,(宽,高)
VideoWriter.write视频写入
VideoWriter.release释放资源
import cv2
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
vw = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))
cv2.namedWindow("frame",cv2.WINDOW_NORMAL)
cv2.resizeWindow("frame",800,600)
cap = cv2.VideoCapture(0)
while True:
    ret,frame = cap.read()
    cv2.imshow('frame',frame)
    vw.write(frame)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
cap.release()
vw.release()
cv2.destroyAllWindows()
import cv2
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
vw = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))

cv2.namedWindow("frame",cv2.WINDOW_NORMAL)
cv2.resizeWindow("frame",640,480)
cap = cv2.VideoCapture(0)
while cap.isOpened(): # 判断摄像头是否为打开状态
    ret,frame = cap.read()
    if not ret: break # 判断帧是否打开
    cv2.imshow('frame',frame)
    # 窗口撑开后重新设置
    cv2.resizeWindow("frame", 640, 480)
    vw.write(frame)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
cap.release()
vw.release()
cv2.destroyAllWindows()

鼠标控制

方法说明参数返回
setMouseCallback监听鼠标窗口名称,监听事件,额外参数
import cv2

# 鼠标操作    x    y    组合操作    额外参数 
def mouse_callback(event, x, y, flags, param):
    print(event, x, y, flags, param)
cv2.namedWindow("img",cv2.WINDOW_NORMAL)
cv2.resizeWindow("img",800,600)
cv2.setMouseCallback("img",mouse_callback,"123")
img = cv2.imread("../1.jpg")
while True:
    cv2.imshow("img",img)
    key = cv2.waitKey(0)
    if key & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

TrackBar 滑块

方法说明参数返回
createTrackbar创建滑块名称,窗口名称,value 当前值,count 最大值,callback 回调,额外参数
getTrackbarPos获取滑块名称,窗口名称当前值
import  cv2
import numpy as np

def callback():
    pass

cv2.namedWindow("img",cv2.WINDOW_NORMAL)

cv2.createTrackbar("R","img",0,255,callback)
cv2.createTrackbar("G","img",0,255,callback)
cv2.createTrackbar("B","img",0,255,callback)

img = np.zeros((480,640,3),np.uint8)

while True:

    r = cv2.getTrackbarPos("R","img")
    g = cv2.getTrackbarPos("G","img")
    b = cv2.getTrackbarPos("B","img")

    img[:] = [b,g,r]

    cv2.imshow("img",img)
    key = cv2.waitKey(10)
    if key & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

色彩

  • opencv 采用 BGR 格式的颜色显示
  • HSV 色相 / 饱和度 / 明度
  • HSL 色相 / 饱和度 / 明度
  • 色彩空间转换
方法说明参数返回
cvtColor色彩转换获取到的图片资源,色彩转换
import cv2

def callback():
    pass
cv2.namedWindow('image',cv2.WINDOW_NORMAL)
cv2.resizeWindow('image',800,600)
img = cv2.imread("../1.jpg",1)
colorspaces = [cv2.COLOR_BGR2RGB,cv2.COLOR_BGR2BGRA,
               cv2.COLOR_BGR2GRAY,cv2.COLOR_BGR2HSV_FULL,
               cv2.COLOR_BGR2YUV]
cv2.createTrackbar('curcolor','image',0,len(colorspaces)-1,callback)
while True:
    v = cv2.getTrackbarPos('curcolor','image')
    # 颜色空间转换
    cvt_img = cv2.cvtColor(img,colorspaces[v])
    cv2.imshow('image',cvt_img)
    key = cv2.waitKey(10)
    if key & 0xFF == ord('q'):
        break
cv2.destroyAllWindows()

Numpy 基本操作

  • 创建矩阵
方法参数说明
array[]
zeros(行,列,通道数),类型值为0
ones(行,列,通道数),类型值为1
full(行,列,通道数),值,类型
identity3三行三列
eye3,5,k=1三行五列, 从第 1-1列开始
import numpy as np

a = np.array([1,2,3])
b = np.array([[1,2,3],[4,5,6]])
print(a)
print(b)

c = np.zeros((8,8,3),np.uint8)
print(c)

d = np.ones((8,8,3),np.uint8)
print(d)

e = np.full((8,8,3),10,np.uint8)
print(e)

f = np.identity(4)
print(f)

y = np.eye(5,7,k=1)
print(y)
  • 赋值 [y,x]
  • 赋值 [y,x,channel]
import numpy as np
import cv2

img = np.zeros((640,480,3),np.uint8)
# 检索
print(img[100,100])
count = 0
while count < 100:
    # 赋值      通道  0,1,2
    # img[count,100,0] = 255
    img[count, 100] = [0,0,255]
    count = count+1
cv2.imshow("img",img)
key = cv2.waitKey(0)
if key & 0xFF == ord('q'):
    cv2.destroyAllWindows()
  • ROI 获取子矩阵 [y1:y2,x1:x2]
  • [:,:] 整个矩阵 [:]
import numpy as np
import cv2

img = np.zeros((640,480,3),np.uint8)
roi = img[100:200,100:200]
img[:] = [255,0,0]
roi[:,:] = [0,0,255]
roi[10:20,10:20] = [255,255,255]
cv2.imshow("img",img)
key = cv2.waitKey(0)
if key & 0xFF == ord('q'):
    cv2.destroyAllWindows()

Mat

  • 深浅拷贝
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
# 浅拷贝
img2 = img
# 深拷贝
img3 = img.copy()
img[10:100,10:100] = [0,0,255]
cv2.imshow('img',img)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
  • 属性
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
# shape 高,长度,通道
print(img.shape)

# 图像占用多大空间
# 高度 * 长度 * 通道数
print(img.size)

# 图像中每个元素的位深
print(img.dtype)
  • 分割 / 合并
import numpy as np
import cv2

img = np.zeros((480,640,3),np.uint8)

# 分割
b,g,r = cv2.split(img)

b[10:100,10:100] = 255
g[10:100,10:100] = 255

# 合并
img2 = cv2.merge([b,g,r])

cv2.imshow("img",img)
cv2.imshow("b",b)
cv2.imshow("g",g)
cv2.imshow("img2",img2)
cv2.waitKey(0)

图形绘制

  • 线
  • 矩形
  • 椭圆
  • 多边形
  • 文本
import numpy as np
import cv2

img = np.zeros((480,640,3),np.uint8)

# 画线 坐标点 x,y
# 起始点     结束点    bgr     线条宽     线型:平滑
cv2.line(img,(10,20),(300,400),(0,0,255),2,16)

# 绘制矩形
# 图像   起始点     结束点    bgr     线条宽 -1为填充
cv2.rectangle(img, (100, 120), (160, 200), (0, 255, 0), 2)
cv2.rectangle(img, (180, 300), (160, 200), (0, 255, 0), -1)

# 圆
# 图像   圆点   半径   bgr     线条宽 -1为填充
cv2.circle(img,(300,300), 30, (255,0,0), 5)
cv2.circle(img,(360,360), 30, (255,0,0), -1)

# 椭圆
# 图像   圆点   长宽一半  起始角度  终止角度  角度     bgr  线条宽 -1为填充
cv2.ellipse(img,(300,420), (100,30),0,0,360, (255,0,0), 5)
cv2.ellipse(img,(300,420), (100,30),0,0,360, (255,0,0), -1)

pts = np.array([(300,10),(150,100),(450,100)],np.int32)
# 多边形
# 图像   点集  是否闭合   bgr  线条宽 
cv2.polylines(img,[pts],True,(0,255,0))
# 多边形填充
# 图像   点集    bgr
cv2.fillPoly(img,[pts],(0,255,0))

# 文本
# 图像    文本    起始点    字体    字号    brg
cv2.putText(img,"Hello World!!!",(100,100),cv2.FONT_HERSHEY_PLAIN,3,(255,255,255))

cv2.imshow("img",img)
cv2.waitKey(0)
import numpy as np
import cv2

# 通过鼠标进行图形的绘制
# 1. l键 画线
# 2. r键 画矩形
# 3. c键 画圆

current = 0
startpos = (0,0)
def mouse_callback(event, x, y, flags, param):
    # print(event, x, y, flags, param)
    global current,startpos
    if event & cv2.EVENT_LBUTTONDOWN == cv2.EVENT_LBUTTONDOWN:
        startpos = (x,y)
    elif event & cv2.EVENT_LBUTTONUP == cv2.EVENT_LBUTTONUP:
        if current == 0:
            cv2.line(img,startpos,(x,y),(0,0,255))
        elif current == 1:
            cv2.rectangle(img,startpos,(x,y),(0,0,255))
        elif current == 2:
            a = (x-startpos[0])
            b = (y-startpos[1])
            r = (a**2 + b**2)**0.5
            cv2.circle(img,startpos,int(r),(0,0,255))
        else:
            print("无其它")

cv2.namedWindow("img",cv2.WINDOW_NORMAL)

cv2.setMouseCallback("img",mouse_callback,"123")

img = np.zeros((480,640,3),np.uint8)
while True:
    cv2.imshow("img",img)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
    elif key  == ord('l'):
        current =0
    elif key  == ord('r'):
        current =1
    elif key  == ord('c'):
        current =2

cv2.destroyAllWindows()

图像运算

  • 溶合
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
img2 = np.ones(img.shape,np.uint8) * 50
# 加    原始图像   相加的图像
img11 = cv2.add(img, img2)
# 减    原始图像   相减的图像
img22 = cv2.subtract(img, img2)
# 乘    原始图像   相乘的图像
img33 = cv2.multiply(img, img2)
# 除    原始图像   相除的图像
img44 = cv2.divide(img, img2)
# 溶合    原始图像 原始图像权重    溶合的图像 溶合的图像权重  静态权重
img55 = cv2.addWeighted(img,0.1, img2,0.9,0)
cv2.imshow('img', img)
cv2.imshow('img11', img11)
cv2.imshow('img22', img22)
cv2.imshow('img33', img33)
cv2.imshow('img44', img44)
cv2.imshow('img55', img55)
cv2.waitKey(0)
  • 非运算
  • 与运算
  • 或运算
  • 异或运算
import numpy as np
import cv2

img1 = np.zeros((200,200),np.uint8)
img1[50:150,50:150] = 255
# 非运算
img11 = cv2.bitwise_not(img1)

img2 = np.zeros((200,200),np.uint8)
img22 = np.zeros((200,200),np.uint8)
img2[20:120,20:120] = 255
img22[80:150,80:150] = 255
# 与运算
# img222 = cv2.bitwise_and(img2,img22)
# 或运算
# img222 = cv2.bitwise_or(img2,img22)
# 异或运算
img222 = cv2.bitwise_xor(img2,img22)

cv2.imshow('img1',img1)
cv2.imshow('img11',img11)
cv2.imshow('img222',img222)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

# roi 获取图标在原始图像的位置
roi = img[0:200,0:200]

# 图标创建
logo = np.zeros((200,200, 3), np.uint8)
logo[20:120,20:120] = [0,0,255]
logo[80:180,80:180] = [0,255,0]

# 创建一个与图标相同的图像
# 使用非运算取相反的图像
# 图标在原始图像的位置与当前获取相反图标进行与运算得到原始图像中显示图标的位置
# logo与原始图像中显示图标相加得到原始图像显示logo的图像
mask = np.zeros((200,200), np.uint8)
mask[20:120,20:120] = 255
mask[80:180,80:180] = 255
m = cv2.bitwise_not(mask)
tmp = cv2.bitwise_and(roi,roi,mask=m)
dst = cv2.add(tmp,logo)

# 更改原始图像显示logo位置的图像
img[0:200,0:200] = dst

cv2.imshow('logo', dst)
cv2.waitKey(0)

图像变换

  • 缩放
  • 翻转
  • 旋转
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

# 缩放
# 图像  (长,宽)   fx 长缩放比例  fy 宽缩放比例   interpolation 插值算法
img1 = cv2.resize(img, (224, 224))
img2 = cv2.resize(img, None, fx=0.6, fy=0.6, interpolation=cv2.INTER_AREA)
img3 = cv2.resize(img, None, fx=1.6, fy=1.6, interpolation=cv2.INTER_AREA)

cv2.imshow('image', img)
cv2.imshow('image1', img1)
cv2.imshow('image2', img2)
cv2.imshow('image3', img3)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

# 翻转
# 图像  0 上下翻转   >0 左右翻转    <0 上下左右翻转
img1 = cv2.flip(img, 0)
img2 = cv2.flip(img, 1)
img3 = cv2.flip(img, -1)

cv2.imshow('image', img)
cv2.imshow('image1', img1)
cv2.imshow('image2', img2)
cv2.imshow('image3', img3)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

# 旋转
img1 = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)

cv2.imshow('image', img1)
cv2.waitKey(0)
  • 仿射变换
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
h,w,ch = img.shape
print(h,w)
# 平移
# M = np.float32([[1,0,100],[0,1,200]])
# 中心点   旋转角度(逆时针)   缩放
# M = cv2.getRotationMatrix2D((w/2,h/2),15,1.0)
src = np.float32([[200,150],[400,150],[400,500]])
dst = np.float32([[100,200],[300,250],[150,600]])
M = cv2.getAffineTransform(src,dst)
# 修改新图的尺寸dsize(w/2,h/2)
img2 = cv2.warpAffine(img,M,(w,h))

cv2.imshow('img',img)
cv2.imshow('img2',img2)
cv2.waitKey(0)
  • 透视变换
import numpy as np
import cv2


img = cv2.imread('../1.jpg')

src = np.float32([[10,300],[100,300],[20,500],[150,450]])
dst = np.float32([[0,0],[120,0],[0,300],[120,300]])
M = cv2.getPerspectiveTransform(src,dst)
img1 = cv2.warpPerspective(img,M,(300,120))

cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.waitKey(0)

图像滤波

import numpy as np
import cv2

img = cv2.imread('../1.jpg')
kernel = np.ones((5,5),np.uint32) / 25
dst = cv2.filter2D(img,-1,kernel)
cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
  • 方盒滤波
  • 均值滤波
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

dst = cv2.blur(img,(5,5))

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
  • 高斯滤波
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

dst = cv2.GaussianBlur(img,(5,5),sigmaX=1)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
  • 中值滤波
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

dst = cv2.medianBlur(img,5)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
  • 双边滤波
import numpy as np
import cv2

img = cv2.imread('../1.jpg')

dst = cv2.bilateralFilter(img,5,20,50)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
  • 高通滤波
import numpy as np
import cv2

img = cv2.imread('./12.png')

# 索贝尔算子x方向边缘
dst = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
# 索贝尔算子y方向边缘
dst1 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
dst2 = cv2.add(dst,dst1)
cv2.imshow('img',img)
cv2.imshow('dst',dst2)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('./12.png')

# 沙尔算子x方向边缘
dst = cv2.Scharr(img,cv2.CV_64F,1,0)
# 沙尔算子y方向边缘
dst1 = cv2.Scharr(img,cv2.CV_64F,0,1)
dst2 = cv2.add(dst,dst1)
cv2.imshow('img',img)
cv2.imshow('dst',dst2)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('./12.png')

# 拉普拉斯算子边缘,需先进行降噪
dst = cv2.Laplacian(img,cv2.CV_64F,ksize=5)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

边缘检测

import numpy as np
import cv2

img = cv2.imread('../1.jpg')

# Canny
dst = cv2.Canny(img,100,200)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

形态学图像处理

  • 图像二值化
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
img1 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

ret,img2 = cv2.threshold(img1,180,255,cv2.THRESH_BINARY)

cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)

cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('../1.jpg')
img1 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

dst = cv2.adaptiveThreshold(img1,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,3,0)

cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.imshow('img2',dst)

cv2.waitKey(0)
  • 腐蚀
  • 膨胀
import numpy as np
import cv2

img = cv2.imread('./img.png')

# kernel = np.ones((3,3),np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
# 腐蚀
img1 = cv2.erode(img,kernel,iterations = 1)
# 膨胀
img2 = cv2.dilate(img1,kernel,iterations = 1)

cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)

cv2.waitKey(0)
  • 开运算
    • 腐蚀 + 膨胀
  • 闭运算
    • 膨胀 + 腐蚀
  • 梯度
  • 顶帽
    • 原图 - 开运算
  • 黑帽
    • 原图 - 闭运算
import numpy as np
import cv2

img = cv2.imread('./img_1.png')
img3 = cv2.imread('./img_3.png')
img6 = cv2.imread('./img_2.png')
imgd = cv2.imread('./img_4.png')

# kernel = np.ones((3,3),np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(7,7))
# 开运算
img2 = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# 闭运算
img33 = cv2.morphologyEx(img3, cv2.MORPH_CLOSE, kernel)
# 梯度
img66 = cv2.morphologyEx(img6, cv2.MORPH_GRADIENT, kernel)
# 顶帽
imgdd = cv2.morphologyEx(imgd, cv2.MORPH_TOPHAT, cv2.getStructuringElement(cv2.MORPH_RECT,(19,19)))
# 黑帽
imgh = cv2.morphologyEx(img3, cv2.MORPH_BLACKHAT, kernel)

cv2.imshow('img2',img2)
cv2.imshow('img33',img33)
cv2.imshow('img66',img66)
cv2.imshow('imgdd',imgdd)
cv2.imshow('imgh',imgh)
cv2.waitKey(0)

图像轮廓

import numpy as np
import cv2

img = cv2.imread('./img_5.png')

# 转为单通道
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
ret,img1 = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)
# 查找轮廓
contours,hierarchy = cv2.findContours(img1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(img,contours,-1,(0,0,255),1)
# 计算面积
area = cv2.contourArea(contours[0])
print(area)
# 计算周长
len = cv2.arcLength(contours[0],True)
print(len)

cv2.imshow('img', img)
cv2.waitKey(0)
import numpy as np
import cv2

img = cv2.imread('./img_6.png')

# 转为单通道
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
ret,img1 = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)
# 查找轮廓
contours,hierarchy = cv2.findContours(img1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(img,contours,0,(255,0,0),1)
# 多边形逼近
approx = cv2.approxPolyDP(contours[0],20,True)
# 多边形凸包
hull = cv2.convexHull(contours[0])

def drawShape(img, approx):
    i = 0
    while i < len(approx):
        if i == len(approx) - 1:
            x, y = approx[i][0]
            x1, y1 = approx[0][0]
            cv2.line(img, (x, y), (x1, y1), (0, 0, 255), 1)
        else:
            x, y = approx[i][0]
            x1, y1 = approx[i + 1][0]
            cv2.line(img, (x, y), (x1, y1), (0, 0, 255), 1)
        i = i+1

drawShape(img,approx)
drawShape(img,hull)

cv2.imshow('img', img)
cv2.waitKey(0)
import numpy as np
import cv2


img = cv2.imread('./img_7.png')

# 转为单通道
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
ret,img1 = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)
# 查找轮廓
contours,hierarchy = cv2.findContours(img1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 最小外接矩形
r = cv2.minAreaRect(contours[1]) 
box = cv2.boxPoints(r)
box = np.int8(box)
cv2.drawContours(img,[box],0,(0,0,255),2)

# 最大外接矩形
x,y,w,h = cv2.boundingRect(contours[1])
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

cv2.imshow("img",img)
cv2.waitKey(0)

特征点检测

  • 哈里斯角点检测
  • Shi-Tomasi 角点检测
  • SIFT
  • SURF
  • ORB
import numpy as np
import cv2

img = cv2.imread('./12.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# dst = cv2.cornerHarris(gray, 2, 3, 0.04)
# img[dst>0.01*dst.max()] = [0,0,255]

# corners = cv2.goodFeaturesToTrack(gray, 1000, 0.01, 10)
# corners = np.int8(corners)
# for i in corners:
#     x,y = i.ravel()
#     cv2.circle(img,(x,y),3,(255,0,0),-1)

# sift = cv2.SIFT.create()
# kp,des = sift.detectAndCompute(gray, None)
# cv2.drawKeypoints(gray,kp,img)

orb = cv2.ORB.create()
kp,des = orb.detectAndCompute(gray,None)
cv2.drawKeypoints(gray,kp,img)

cv2.imshow("img",img)
cv2.waitKey(0)

特征匹配

  • BF
import numpy as np
import cv2

img1 = cv2.imread('./img.png')
img2 = cv2.imread('./img_1.png')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT.create()
kp1,des1 = sift.detectAndCompute(gray1, None)
kp2,des2 = sift.detectAndCompute(gray2, None)

bf = cv2.BFMatcher(cv2.NORM_L1)
matches = bf.match(des1, des2)
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches, None, flags=2)

cv2.imshow("img",img3)
cv2.waitKey(0)
  • FLANN
import numpy as np
import cv2

img1 = cv2.imread('./img.png')
img2 = cv2.imread('./img_1.png')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT.create()
kp1,des1 = sift.detectAndCompute(gray1, None)
kp2,des2 = sift.detectAndCompute(gray2, None)


flann = cv2.FlannBasedMatcher( dict(trees=5,algorithm=1),dict(checks=50))
matches = flann.knnMatch(des1, des2,k=2)

good = []
for i,(m,n) in enumerate(matches):
    if m.distance < 0.7*n.distance:
        good.append(m)

ret = cv2.drawMatchesKnn(img1,kp1,img2,kp2,[good],None)

cv2.imshow("img",ret)
cv2.waitKey(0)

图像分割

import numpy as np
import cv2

img = cv2.imread("./img.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

kernel = np.ones((3,3),np.uint8)
open1 = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations=2)

bg = cv2.dilate(open1,kernel,iterations=2)

dist = cv2.distanceTransform(open1,cv2.DIST_L2,5)
re1t,fg = cv2.threshold(dist,0.7*dist.max(),255,cv2.THRESH_BINARY)

fg = np.uint8(fg)
unknow = cv2.subtract(bg,fg)

ret3,marker = cv2.connectedComponents(fg)
marker = marker + 1
marker[unknow == 255] = 0

result = cv2.watershed(img,marker)

img[result == -1] = [0,0,255]

cv2.imshow("img",img)
cv2.waitKey(0)
import numpy as np
import cv2


class App:
    rect = (0,0,0,0)
    flag_rect = False
    startX = 0
    startY = 0

    def onm ouse(self,event,x,y,flags,param):
        print("onmouse")

        if event == cv2.EVENT_LBUTTONDOWN:
            self.flag_rect = True
            self.startX = x
            self.startY = y
        elif event == cv2.EVENT_LBUTTONUP:
            self.flag_rect = False
            cv2.rectangle(self.img,(self.startX,self.startY),(x,y),(0,0,255),2)

            self.rect = (min(self.startX,x),min(self.startY,y),abs(self.startX - x),abs(self.startY - y))
            print("左键抬起")
        elif event == cv2.EVENT_MOUSEMOVE:
            if self.flag_rect:
                self.img = self.img2.copy()
                cv2.rectangle(self.img,(self.startX,self.startY),(x,y),(255,0,0),2)
            print("移动")


    def run(self):
        print("run")
        cv2.namedWindow('input')
        cv2.setMouseCallback('input',self.onmouse)

        self.img = cv2.imread('./img.png')
        self.img2 = self.img.copy()
        self.mask = np.zeros(self.img.shape[:2],np.uint8)
        self.output = np.zeros(self.img.shape,np.uint8)

        while 1:
            cv2.imshow('input',self.img)
            cv2.imshow('output',self.output)
            k = cv2.waitKey(100)
            if k == 27:
                break
            if k == ord('g'):
                bgmodel = np.zeros((1,65),np.float64)
                fgmodel = np.zeros((1,65),np.float64)
                cv2.grabCut(self.img2,self.mask,self.rect,bgmodel,fgmodel,1,cv2.GC_INIT_WITH_RECT)

            mask2 = np.where((self.mask == 1)|(self.mask == 3),255,0).astype('uint8')
            self.output = cv2.bitwise_and(self.img2,self.img2,mask=mask2)


App().run()

import numpy as np
import cv2

img = cv2.imread("./img.png")

img2 = cv2.pyrMeanShiftFiltering(img, 20, 30)

img3 = cv2.Canny(img2, 150, 300)

contours,_ = cv2.findContours(img3, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0,0,255), 2)

cv2.imshow("img", img)
cv2.imshow("img2", img2)
cv2.imshow("img3", img3)

cv2.waitKey(0)
import numpy as np
import cv2

cap = cv2.VideoCapture('../2.mp4')

mog = cv2.createBackgroundSubtractorMOG2()

while cap.isOpened():
    ret, frame = cap.read()
    fgmask = mog.apply(frame)

    cv2.imshow('frame', fgmask)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

图像修复

import numpy as np
import cv2

img = cv2.imread("./img_1.png")
mask = cv2.imread("./img_2.png",0)
mask = cv2.resize(mask,(img.shape[1],img.shape[0]))
print(img.shape)
print(mask.shape)
dst = cv2.inpaint(img,mask,3,cv2.INPAINT_TELEA)

cv2.imshow("img",dst)
cv2.waitKey(0)

哈尔级联法

人脸识别

import numpy as np
import cv2

# 创建haar级联器
facer = cv2.CascadeClassifier(
    'D:\SoftWare\py\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml'
)

img = cv2.imread('./img_3.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = facer.detectMultiScale(gray,1.1,5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
import numpy as np
import cv2

# 创建haar级联器
facer = cv2.CascadeClassifier(
    'D:\SoftWare\py\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml'
)

img = cv2.VideoCapture(0)

while True:
    ret,frame = img.read()

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = facer.detectMultiScale(gray,1.1,5)

    for (x, y, w, h) in faces:
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.imshow('img', frame)
    k = cv2.waitKey(10)
    if k == 27:
        break
img.release()
cv2.destroyAllWindows()
import numpy as np
import cv2

# 眼
facer = cv2.CascadeClassifier(
    'D:\SoftWare\py\Lib\site-packages\cv2\data\haarcascade_eye.xml'
)

img = cv2.imread('./img_3.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = facer.detectMultiScale(gray,1.1,5)


for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)

标签:入门,img,imshow,cv2,OpenCV,np,import,255
From: https://blog.csdn.net/weixin_45381071/article/details/144667773

相关文章

  • OpenCV-Python实战(7)——阈值处理
    一、cv2.threshold()res,dst=cv2.threshold(src=*,thresh=*,maxval=*,type=*) res:函数返回的阈值。dst:阈值处理后的函数。src:要处理的图像。thresh:阈值。maxval:设定像素最大值。type:阈值函数处理方法,常见方法如下表所示:方法值解释THRESH_BINARY0大于阈值取最大值,......
  • DNS 原理入门
     DNS原理入门 导读DNS是互联网核心协议之一。不管是上网浏览,还是编程开发,都需要了解一点它的知识。本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作。我的目标是,读完此文后,你就能完全理解DNS。一、DNS是什么?DNS(DomainNameSystem的缩写)的......
  • 黑客入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
       这篇文章没有什么套路。就是一套自学理论和方向,具体的需要配合网络黑白去学习。毕竟是有网络才会有黑白!有自学也有培训!1.打死也不要相信什么分分钟钟教你成为大黑阔的,各种包教包会的教程,就算打不死也不要去购买那些所谓的盗号软件之类的东西。2,我之前让你......
  • 成为一名厉害的黑客,必须知道的12个步骤,黑客入门
        黑客攻防是一个极具魅力的技术领域,但成为一名黑客毫无疑问也并不容易。你必须拥有对新技术的好奇心和积极的学习态度,具备很深的计算机系统、编程语言和操作系统知识,并乐意不断地去学习和进步。如果你想成为一名优秀的黑客,下面是10种最重要的基础条件,请认真阅读:1......
  • 网络安全入门教程(非常详细)从零基础入门到精通_网路安全 教程
     前言1.入行网络安全这是一条坚持的道路,三分钟的热情可以放弃往下看了。2.多练多想,不要离开了教程什么都不会了,最好看完教程自己独立完成技术方面的开发。3.有时多百度,我们往往都遇不到好心的大神,谁会无聊天天给你做解答。4.遇到实在搞不懂的,可以先放放,以后再来解......
  • 一文入门现代密码学(应用篇)
    主页微信公众号:密码应用技术实战博客园首页:https://www.cnblogs.com/informatics/GIT地址:https://github.com/warm3snow本文组织简介:现代密码学应用背景密码技术应用体系加密硬件加密软件密钥体系关键密码接口总结参考资料简介现代密码学应用:现代密码学是信息安......
  • VSCode 插件开发实战(一):快速入门插件开发
    前言VisualStudioCode(简称VSCode)是一款非常流行的代码编辑器,它不仅轻量、快速,还支持各种扩展插件(Extension),可以大大提升我们的开发效率。如果你觉得现有的插件无法满足你的需求,没关系,你可以自己动手编写一个插件。今天,我将带你一步步了解如何自定义VSCode插件。什么是V......
  • 《LLM入门教程》大模型教程笔记5:一、面向开发者的提示工程——2. 提示原则——原则二:
    项目地址:llm-cookbook教程在线阅读:面向开发者的LLM入门教程openAIPython库版本:1.52.1文章目录第二章提示原则二、原则二给模型时间去思考2.1指定完成任务所需的步骤复杂任务需求代码示例(原)代码示例(基于原代码修改)存在问题改进prompt(进一步告知大模型需要的输出格......
  • 油田新员工安全培训入门指南,从理论到实践的全面覆盖
    在石油开采这一高风险行业中,新员工的安全培训是确保其快速融入工作环境、保障个人与企业安全的重要环节。对于初入油田的新员工而言,面对复杂多变的作业环境、严格的安全规范以及潜在的安全风险,一套系统、全面的安全培训入门指南显得尤为重要。本文将结合工业互联网经验和实际,为......
  • 【Java 代码审计入门-02】SQL 漏洞原理与实际案例介绍
    SQL注入漏洞全解析发布日期:2024年12月26日引言在互联网的快速发展的今天,Web应用的安全性变得越来越重要。SQL注入(SQLInjection,简称SQLi)作为最常见的Web安全漏洞之一,给无数网站和应用程序带来了巨大的风险。本文将深入探讨SQL注入的原理、危害以及如何有效防范。什么是S......