- CNN
#coding:utf8
import torch
import torch.nn as nn
import numpy as np
"""
使用pytorch实现CNN
手动实现CNN
对比
"""
#一个二维卷积
class TorchCNN(nn.Module):
def __init__(self, in_channel, out_channel, kernel):
super(TorchCNN, self).__init__()
self.layer = nn.Conv2d(in_channel, out_channel, kernel, bias=False)
def forward(self, x):
return self.layer(x)
#自定义CNN模型
class DiyCNN:
def __init__(self, input_height, input_width, weights, kernel_size):
self.height = input_height
self.width = input_width
self.weights = weights
self.kernel_size = kernel_size
def forward(self, x):
output = []
for kernel_weight in self.weights:
kernel_weight = kernel_weight.squeeze().numpy() #shape : 2x2
kernel_output = np.zeros((self.height - kernel_size + 1, self.width - kernel_size + 1))
for i in range(self.height - kernel_size + 1):
for j in range(self.width - kernel_size + 1):
window = x[i:i+kernel_size, j:j+kernel_size]
kernel_output[i, j] = np.sum(kernel_weight * window) # np.dot(a, b) != a * b
output.append(kernel_output)
return np.array(output)
x = np.array([[0.1, 0.2, 0.3, 0.4],
[-3, -4, -5, -6],
[5.1, 6.2, 7.3, 8.4],
[-0.7, -0.8, -0.9, -1]]) #网络输入
#torch实验
in_channel = 1
out_channel = 3
kernel_size = 2
torch_model = TorchCNN(in_channel, out_channel, kernel_size)
print(torch_model.state_dict())
# OrderedDict([('layer.weight', tensor([[[[-0.1427, 0.1269],
# [-0.3778, 0.0182]]],
# [[[ 0.3406, 0.3941],
# [-0.2500, -0.0908]]],
# [[[-0.3362, -0.1736],
# [-0.4303, 0.3141]]]]))])
torch_w = torch_model.state_dict()["layer.weight"]
torch_x = torch.FloatTensor([[x]])
output = torch_model.forward(torch_x)
output = output.detach().numpy()
print(output, output.shape, "torch模型预测结果\n")
# [[[[ 1.0716785 1.4296913 1.787704 ]
# [-1.8935721 -2.2733717 -2.6531715 ]
# [ 0.30921668 0.32785434 0.3464917 ]]
#
# [[ 1.2261667 1.6404585 2.0547502 ]
# [-4.4363394 -5.545947 -6.6555543 ]
# [ 4.428199 5.2704554 6.112712 ]]
#
# [[-0.03400278 0.03117025 0.09634328]
# [ 1.456101 1.8381113 2.220121 ]
# [-2.7409387 -3.290077 -3.8392155 ]]]] (1, 3, 3, 3) torch模型预测结果
diy_model = DiyCNN(x.shape[0], x.shape[1], torch_w, kernel_size)
output = diy_model.forward(x)
# [[[ 1.07167848 1.42969126 1.78770404]
# [-1.89357215 -2.27337179 -2.65317143]
# [ 0.30921673 0.32785429 0.34649184]]
#
# [[ 1.22616674 1.64045846 2.05475019]
# [-4.43633947 -5.54594688 -6.6555543 ]
# [ 4.42819927 5.27045575 6.11271224]]
#
# [[-0.03400279 0.03117025 0.09634329]
# [ 1.45610113 1.8381112 2.22012128]
# [-2.74093884 -3.29007711 -3.83921538]]] diy模型预测结果
- RNN
#coding:utf8
import torch
import torch.nn as nn
import numpy as np
"""
使用pytorch实现RNN
手动实现RNN
对比
"""
class TorchRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(TorchRNN, self).__init__()
self.layer = nn.RNN(input_size, hidden_size, bias=False, batch_first=True)
def forward(self, x):
return self.layer(x)
#自定义RNN模型
class DiyRNN:
def __init__(self, w_ih, w_hh, hidden_size):
self.w_ih = w_ih
self.w_hh = w_hh
self.hidden_size = hidden_size
def forward(self, x):
ht = np.zeros((self.hidden_size))
output = []
for xt in x:
ux = np.dot(self.w_ih, xt)
wh = np.dot(self.w_hh, ht)
ht_next = np.tanh(ux + wh)
output.append(ht_next)
ht = ht_next
return np.array(output), ht
x = np.array([[1, 2, 3],
[3, 4, 5],
[5, 6, 7]]) #网络输入
#torch实验
hidden_size = 4
torch_model = TorchRNN(3, hidden_size)
# print(torch_model.state_dict())
w_ih = torch_model.state_dict()["layer.weight_ih_l0"]
w_hh = torch_model.state_dict()["layer.weight_hh_l0"]
torch_x = torch.FloatTensor([x])
output, h = torch_model.forward(torch_x)
print(output.detach().numpy(), "torch模型预测结果")
print(h.detach().numpy(), "torch模型预测隐含层结果")
# [[[-0.71792674 -0.9736518 0.84708744 0.9771833 ]
# [-0.9477417 -0.99978185 0.9003902 0.99973494]
# [-0.9902414 -0.99999815 0.98547614 0.99999344]]] torch模型预测结果
# [[[-0.9902414 -0.99999815 0.98547614 0.99999344]]] torch模型预测隐含层结果
diy_model = DiyRNN(w_ih, w_hh, hidden_size)
output, h = diy_model.forward(x)
print(output, "diy模型预测结果")
print(h, "diy模型预测隐含层结果")
# [[-0.71792672 -0.97365181 0.84708744 0.97718326]
# [-0.94774171 -0.99978183 0.9003902 0.99973496]
# [-0.99024139 -0.99999813 0.98547611 0.99999344]] diy模型预测结果
# [-0.99024139 -0.99999813 0.98547611 0.99999344] diy模型预测隐含层结果
- LSTM
import torch
import torch.nn as nn
import numpy as np
'''
使用pytorch实现LSTM
手动实现LSTM
对比
'''
#构造一个输入
length = 6
input_dim = 12
hidden_size = 7
x = np.random.random((length, input_dim))
# print(x)
#使用pytorch的lstm层
torch_lstm = nn.LSTM(input_dim, hidden_size, batch_first=True)
def sigmoid(x):
return 1/(1 + np.exp(-x))
#将pytorch的lstm网络权重拿出来,用numpy通过矩阵运算实现lstm的计算
def numpy_lstm(x, state_dict):
weight_ih = state_dict["weight_ih_l0"].numpy()
weight_hh = state_dict["weight_hh_l0"].numpy()
bias_ih = state_dict["bias_ih_l0"].numpy()
bias_hh = state_dict["bias_hh_l0"].numpy()
#pytorch将四个门的权重拼接存储,我们将它拆开
w_i_x, w_f_x, w_c_x, w_o_x = weight_ih[0:hidden_size, :], \
weight_ih[hidden_size:hidden_size*2, :],\
weight_ih[hidden_size*2:hidden_size*3, :],\
weight_ih[hidden_size*3:hidden_size*4, :]
w_i_h, w_f_h, w_c_h, w_o_h = weight_hh[0:hidden_size, :], \
weight_hh[hidden_size:hidden_size * 2, :], \
weight_hh[hidden_size * 2:hidden_size * 3, :], \
weight_hh[hidden_size * 3:hidden_size * 4, :]
b_i_x, b_f_x, b_c_x, b_o_x = bias_ih[0:hidden_size], \
bias_ih[hidden_size:hidden_size * 2], \
bias_ih[hidden_size * 2:hidden_size * 3], \
bias_ih[hidden_size * 3:hidden_size * 4]
b_i_h, b_f_h, b_c_h, b_o_h = bias_hh[0:hidden_size], \
bias_hh[hidden_size:hidden_size * 2], \
bias_hh[hidden_size * 2:hidden_size * 3], \
bias_hh[hidden_size * 3:hidden_size * 4]
w_i = np.concatenate([w_i_h, w_i_x], axis=1)
w_f = np.concatenate([w_f_h, w_f_x], axis=1)
w_c = np.concatenate([w_c_h, w_c_x], axis=1)
w_o = np.concatenate([w_o_h, w_o_x], axis=1)
b_f = b_f_h + b_f_x
b_i = b_i_h + b_i_x
b_c = b_c_h + b_c_x
b_o = b_o_h + b_o_x
c_t = np.zeros((1, hidden_size))
h_t = np.zeros((1, hidden_size))
sequence_output = []
for x_t in x:
x_t = x_t[np.newaxis, :]
hx = np.concatenate([h_t, x_t], axis=1)
f_t = sigmoid(np.dot(hx, w_f.T) + b_f)
i_t = sigmoid(np.dot(hx, w_i.T) + b_i)
g = np.tanh(np.dot(hx, w_c.T) + b_c)
c_t = f_t * c_t + i_t * g
o_t = sigmoid(np.dot(hx, w_o.T) + b_o)
h_t = o_t * np.tanh(c_t)
sequence_output.append(h_t)
return np.array(sequence_output), (h_t, c_t)
torch_sequence_output, (torch_h, torch_c) = torch_lstm(torch.Tensor([x]))
numpy_sequence_output, (numpy_h, numpy_c) = numpy_lstm(x, torch_lstm.state_dict())
print(torch_sequence_output)
print(numpy_sequence_output)
# tensor([[[ 0.1510, 0.0955, -0.0583, -0.1020, -0.0862, 0.0469, -0.1222],
# [ 0.3499, 0.3118, 0.0412, -0.1871, -0.1361, 0.0328, -0.1430],
# [ 0.4267, 0.2855, 0.0044, -0.2064, -0.2331, -0.0331, -0.1591],
# [ 0.3349, 0.2281, 0.1308, -0.2007, -0.2060, -0.0087, -0.1636],
# [ 0.4035, 0.2886, 0.2859, -0.2461, -0.2607, 0.0434, -0.1699],
# [ 0.3989, 0.3567, 0.1628, -0.1877, -0.2917, 0.0045, -0.2407]]],
# grad_fn=<TransposeBackward0>)
# [[[ 0.15099122 0.09554478 -0.05826778 -0.10197903 -0.08624412
# 0.04691251 -0.12215472]]
# [[ 0.34985161 0.31178944 0.04115072 -0.18708519 -0.13612159
# 0.03282586 -0.14295764]]
# [[ 0.42666856 0.28547003 0.00443672 -0.20642571 -0.23312739
# -0.0331053 -0.15905215]]
# [[ 0.33494093 0.22813763 0.13078913 -0.20069858 -0.2059699
# -0.00873538 -0.16356931]]
# [[ 0.40352166 0.28857645 0.28591458 -0.24610013 -0.26066421
# 0.04338363 -0.1699052 ]]
# [[ 0.39891811 0.35666413 0.16277961 -0.18774825 -0.29172435
# 0.00446361 -0.24067678]]]
print(torch_h)
print(numpy_h)
# tensor([[[ 0.3989, 0.3567, 0.1628, -0.1877, -0.2917, 0.0045, -0.2407]]],
# grad_fn=<StackBackward0>)
# [[ 0.39891811 0.35666413 0.16277961 -0.18774825 -0.29172435 0.00446361
# -0.24067678]]
print(torch_c)
print(numpy_c)
# tensor([[[ 0.5560, 0.6629, 0.2972, -0.9371, -0.5549, 0.0061, -0.7561]]],
# grad_fn=<StackBackward0>)
# [[ 0.55596722 0.6628956 0.29717248 -0.93707451 -0.5548541 0.00609941
# -0.7561093 ]]
- GRU
import torch
import torch.nn as nn
import numpy as np
'''
使用pytorch实现GRU
手动实现GRU
对比
'''
#构造一个输入
length = 6
input_dim = 12
hidden_size = 7
x = np.random.random((length, input_dim))
def sigmoid(x):
return 1/(1 + np.exp(-x))
#使用pytorch的GRU层
torch_gru = nn.GRU(input_dim, hidden_size, batch_first=True)
#将pytorch的GRU网络权重拿出来,用numpy通过矩阵运算实现GRU的计算
def numpy_gru(x, state_dict):
weight_ih = state_dict["weight_ih_l0"].numpy()
weight_hh = state_dict["weight_hh_l0"].numpy()
bias_ih = state_dict["bias_ih_l0"].numpy()
bias_hh = state_dict["bias_hh_l0"].numpy()
#pytorch将3个门的权重拼接存储,我们将它拆开
w_r_x, w_z_x, w_x = weight_ih[0:hidden_size, :], \
weight_ih[hidden_size:hidden_size * 2, :],\
weight_ih[hidden_size * 2:hidden_size * 3, :]
w_r_h, w_z_h, w_h = weight_hh[0:hidden_size, :], \
weight_hh[hidden_size:hidden_size * 2, :], \
weight_hh[hidden_size * 2:hidden_size * 3, :]
b_r_x, b_z_x, b_x = bias_ih[0:hidden_size], \
bias_ih[hidden_size:hidden_size * 2], \
bias_ih[hidden_size * 2:hidden_size * 3]
b_r_h, b_z_h, b_h = bias_hh[0:hidden_size], \
bias_hh[hidden_size:hidden_size * 2], \
bias_hh[hidden_size * 2:hidden_size * 3]
w_z = np.concatenate([w_z_h, w_z_x], axis=1)
w_r = np.concatenate([w_r_h, w_r_x], axis=1)
b_z = b_z_h + b_z_x
b_r = b_r_h + b_r_x
h_t = np.zeros((1, hidden_size))
sequence_output = []
for x_t in x:
x_t = x_t[np.newaxis, :]
hx = np.concatenate([h_t, x_t], axis=1)
z_t = sigmoid(np.dot(hx, w_z.T) + b_z)
r_t = sigmoid(np.dot(hx, w_r.T) + b_r)
h = np.tanh(r_t * (np.dot(h_t, w_h.T) + b_h) + np.dot(x_t, w_x.T) + b_x)
h_t = (1 - z_t) * h + z_t * h_t
sequence_output.append(h_t)
return np.array(sequence_output), h_t
torch_sequence_output, torch_h = torch_gru(torch.Tensor([x]))
numpy_sequence_output, numpy_h = numpy_gru(x, torch_gru.state_dict())
print(torch_sequence_output)
print(numpy_sequence_output)
# tensor([[[ 0.1594, -0.1153, -0.4586, -0.0186, 0.2189, 0.1135, -0.3679],
# [ 0.4451, -0.2922, -0.7419, -0.1512, 0.3880, 0.1821, -0.5169],
# [ 0.5038, -0.3299, -0.5477, 0.0747, 0.5901, 0.1773, -0.4521],
# [ 0.4910, -0.3767, -0.7289, 0.0494, 0.7221, 0.1721, -0.5471],
# [ 0.4542, -0.4090, -0.7239, 0.1361, 0.6370, 0.1548, -0.5263],
# [ 0.4567, -0.2905, -0.5265, 0.2888, 0.7370, 0.0703, -0.3895]]],
# grad_fn=<TransposeBackward1>)
# [[[ 0.15942519 -0.11533116 -0.45862967 -0.01859021 0.21886492
# 0.1134777 -0.36790504]]
# [[ 0.44507494 -0.29216005 -0.74194526 -0.15115649 0.38796698
# 0.18213155 -0.51694817]]
# [[ 0.50378448 -0.32986759 -0.54772077 0.07470304 0.5900535
# 0.17727659 -0.45206073]]
# [[ 0.49101454 -0.37669122 -0.72891378 0.04940939 0.72214786
# 0.17210141 -0.54709095]]
# [[ 0.45421076 -0.40898236 -0.72388504 0.13608405 0.63704706
# 0.15476695 -0.52628761]]
# [[ 0.45674199 -0.2905453 -0.52648383 0.28878751 0.73695645
# 0.07033669 -0.38946996]]]
print(torch_h)
print(numpy_h)
# tensor([[[ 0.4567, -0.2905, -0.5265, 0.2888, 0.7370, 0.0703, -0.3895]]],
# grad_fn=<StackBackward0>)
# [[ 0.45674199 -0.2905453 -0.52648383 0.28878751 0.73695645 0.07033669
# -0.38946996]]
标签:gru,rnn,torch,np,cnn,output,hidden,numpy,size
From: https://www.cnblogs.com/yyyccs/p/18626678