首页 > 其他分享 >numpy实现cnn, rnn, lstm, gru

numpy实现cnn, rnn, lstm, gru

时间:2024-12-24 09:58:08浏览次数:7  
标签:gru rnn torch np cnn output hidden numpy size

  • CNN
#coding:utf8

import torch
import torch.nn as nn
import numpy as np


"""
使用pytorch实现CNN
手动实现CNN
对比
"""
#一个二维卷积
class TorchCNN(nn.Module):
    def __init__(self, in_channel, out_channel, kernel):
        super(TorchCNN, self).__init__()
        self.layer = nn.Conv2d(in_channel, out_channel, kernel, bias=False)

    def forward(self, x):
        return self.layer(x)

#自定义CNN模型
class DiyCNN:
    def __init__(self, input_height, input_width, weights, kernel_size):
        self.height = input_height
        self.width = input_width
        self.weights = weights
        self.kernel_size = kernel_size

    def forward(self, x):
        output = []
        for kernel_weight in self.weights:
            kernel_weight = kernel_weight.squeeze().numpy() #shape : 2x2
            kernel_output = np.zeros((self.height - kernel_size + 1, self.width - kernel_size + 1))
            for i in range(self.height - kernel_size + 1):
                for j in range(self.width - kernel_size + 1):
                    window = x[i:i+kernel_size, j:j+kernel_size]
                    kernel_output[i, j] = np.sum(kernel_weight * window) # np.dot(a, b) != a * b
            output.append(kernel_output)
        return np.array(output)


x = np.array([[0.1, 0.2, 0.3, 0.4],
              [-3, -4, -5, -6],
              [5.1, 6.2, 7.3, 8.4],
              [-0.7, -0.8, -0.9, -1]])  #网络输入

#torch实验
in_channel = 1
out_channel = 3
kernel_size = 2
torch_model = TorchCNN(in_channel, out_channel, kernel_size)
print(torch_model.state_dict())
# OrderedDict([('layer.weight', tensor([[[[-0.1427,  0.1269],
#           [-0.3778,  0.0182]]],
#         [[[ 0.3406,  0.3941],
#           [-0.2500, -0.0908]]],
#         [[[-0.3362, -0.1736],
#           [-0.4303,  0.3141]]]]))])
torch_w = torch_model.state_dict()["layer.weight"]

torch_x = torch.FloatTensor([[x]])
output = torch_model.forward(torch_x)
output = output.detach().numpy()
print(output, output.shape, "torch模型预测结果\n")
# [[[[ 1.0716785   1.4296913   1.787704  ]
#    [-1.8935721  -2.2733717  -2.6531715 ]
#    [ 0.30921668  0.32785434  0.3464917 ]]
# 
#   [[ 1.2261667   1.6404585   2.0547502 ]
#    [-4.4363394  -5.545947   -6.6555543 ]
#    [ 4.428199    5.2704554   6.112712  ]]
# 
#   [[-0.03400278  0.03117025  0.09634328]
#    [ 1.456101    1.8381113   2.220121  ]
#    [-2.7409387  -3.290077   -3.8392155 ]]]] (1, 3, 3, 3) torch模型预测结果
diy_model = DiyCNN(x.shape[0], x.shape[1], torch_w, kernel_size)
output = diy_model.forward(x)
# [[[ 1.07167848  1.42969126  1.78770404]
#   [-1.89357215 -2.27337179 -2.65317143]
#   [ 0.30921673  0.32785429  0.34649184]]
# 
#  [[ 1.22616674  1.64045846  2.05475019]
#   [-4.43633947 -5.54594688 -6.6555543 ]
#   [ 4.42819927  5.27045575  6.11271224]]
# 
#  [[-0.03400279  0.03117025  0.09634329]
#   [ 1.45610113  1.8381112   2.22012128]
#   [-2.74093884 -3.29007711 -3.83921538]]] diy模型预测结果
  • RNN
#coding:utf8

import torch
import torch.nn as nn
import numpy as np


"""
使用pytorch实现RNN
手动实现RNN
对比
"""

class TorchRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(TorchRNN, self).__init__()
        self.layer = nn.RNN(input_size, hidden_size, bias=False, batch_first=True)

    def forward(self, x):
        return self.layer(x)

#自定义RNN模型
class DiyRNN:
    def __init__(self, w_ih, w_hh, hidden_size):
        self.w_ih = w_ih
        self.w_hh = w_hh
        self.hidden_size = hidden_size

    def forward(self, x):
        ht = np.zeros((self.hidden_size))
        output = []
        for xt in x:
            ux = np.dot(self.w_ih, xt)
            wh = np.dot(self.w_hh, ht)
            ht_next = np.tanh(ux + wh)
            output.append(ht_next)
            ht = ht_next
        return np.array(output), ht


x = np.array([[1, 2, 3],
              [3, 4, 5],
              [5, 6, 7]])  #网络输入

#torch实验
hidden_size = 4
torch_model = TorchRNN(3, hidden_size)

# print(torch_model.state_dict())
w_ih = torch_model.state_dict()["layer.weight_ih_l0"]
w_hh = torch_model.state_dict()["layer.weight_hh_l0"]

torch_x = torch.FloatTensor([x])
output, h = torch_model.forward(torch_x)
print(output.detach().numpy(), "torch模型预测结果")
print(h.detach().numpy(), "torch模型预测隐含层结果")
# [[[-0.71792674 -0.9736518   0.84708744  0.9771833 ]
#   [-0.9477417  -0.99978185  0.9003902   0.99973494]
#   [-0.9902414  -0.99999815  0.98547614  0.99999344]]] torch模型预测结果
# [[[-0.9902414  -0.99999815  0.98547614  0.99999344]]] torch模型预测隐含层结果
diy_model = DiyRNN(w_ih, w_hh, hidden_size)
output, h = diy_model.forward(x)
print(output, "diy模型预测结果")
print(h, "diy模型预测隐含层结果")
# [[-0.71792672 -0.97365181  0.84708744  0.97718326]
#  [-0.94774171 -0.99978183  0.9003902   0.99973496]
#  [-0.99024139 -0.99999813  0.98547611  0.99999344]] diy模型预测结果
# [-0.99024139 -0.99999813  0.98547611  0.99999344] diy模型预测隐含层结果
  • LSTM

import torch
import torch.nn as nn
import numpy as np

'''
使用pytorch实现LSTM
手动实现LSTM
对比
'''

#构造一个输入
length = 6
input_dim = 12
hidden_size = 7
x = np.random.random((length, input_dim))
# print(x)

#使用pytorch的lstm层
torch_lstm = nn.LSTM(input_dim, hidden_size, batch_first=True)

def sigmoid(x):
    return 1/(1 + np.exp(-x))

#将pytorch的lstm网络权重拿出来,用numpy通过矩阵运算实现lstm的计算
def numpy_lstm(x, state_dict):
    weight_ih = state_dict["weight_ih_l0"].numpy()
    weight_hh = state_dict["weight_hh_l0"].numpy()
    bias_ih = state_dict["bias_ih_l0"].numpy()
    bias_hh = state_dict["bias_hh_l0"].numpy()
    #pytorch将四个门的权重拼接存储,我们将它拆开
    w_i_x, w_f_x, w_c_x, w_o_x = weight_ih[0:hidden_size, :], \
                                 weight_ih[hidden_size:hidden_size*2, :],\
                                 weight_ih[hidden_size*2:hidden_size*3, :],\
                                 weight_ih[hidden_size*3:hidden_size*4, :]
    w_i_h, w_f_h, w_c_h, w_o_h = weight_hh[0:hidden_size, :], \
                                 weight_hh[hidden_size:hidden_size * 2, :], \
                                 weight_hh[hidden_size * 2:hidden_size * 3, :], \
                                 weight_hh[hidden_size * 3:hidden_size * 4, :]
    b_i_x, b_f_x, b_c_x, b_o_x = bias_ih[0:hidden_size], \
                                 bias_ih[hidden_size:hidden_size * 2], \
                                 bias_ih[hidden_size * 2:hidden_size * 3], \
                                 bias_ih[hidden_size * 3:hidden_size * 4]
    b_i_h, b_f_h, b_c_h, b_o_h = bias_hh[0:hidden_size], \
                                 bias_hh[hidden_size:hidden_size * 2], \
                                 bias_hh[hidden_size * 2:hidden_size * 3], \
                                 bias_hh[hidden_size * 3:hidden_size * 4]
    w_i = np.concatenate([w_i_h, w_i_x], axis=1)
    w_f = np.concatenate([w_f_h, w_f_x], axis=1)
    w_c = np.concatenate([w_c_h, w_c_x], axis=1)
    w_o = np.concatenate([w_o_h, w_o_x], axis=1)
    b_f = b_f_h + b_f_x
    b_i = b_i_h + b_i_x
    b_c = b_c_h + b_c_x
    b_o = b_o_h + b_o_x
    c_t = np.zeros((1, hidden_size))
    h_t = np.zeros((1, hidden_size))
    sequence_output = []
    for x_t in x:
        x_t = x_t[np.newaxis, :]
        hx = np.concatenate([h_t, x_t], axis=1)
        f_t = sigmoid(np.dot(hx, w_f.T) + b_f)
        i_t = sigmoid(np.dot(hx, w_i.T) + b_i)
        g = np.tanh(np.dot(hx, w_c.T) + b_c)
        c_t = f_t * c_t + i_t * g
        o_t = sigmoid(np.dot(hx, w_o.T) + b_o)
        h_t = o_t * np.tanh(c_t)
        sequence_output.append(h_t)
    return np.array(sequence_output), (h_t, c_t)


torch_sequence_output, (torch_h, torch_c) = torch_lstm(torch.Tensor([x]))
numpy_sequence_output, (numpy_h, numpy_c) = numpy_lstm(x, torch_lstm.state_dict())

print(torch_sequence_output)
print(numpy_sequence_output)
# tensor([[[ 0.1510,  0.0955, -0.0583, -0.1020, -0.0862,  0.0469, -0.1222],
#          [ 0.3499,  0.3118,  0.0412, -0.1871, -0.1361,  0.0328, -0.1430],
#          [ 0.4267,  0.2855,  0.0044, -0.2064, -0.2331, -0.0331, -0.1591],
#          [ 0.3349,  0.2281,  0.1308, -0.2007, -0.2060, -0.0087, -0.1636],
#          [ 0.4035,  0.2886,  0.2859, -0.2461, -0.2607,  0.0434, -0.1699],
#          [ 0.3989,  0.3567,  0.1628, -0.1877, -0.2917,  0.0045, -0.2407]]],
#        grad_fn=<TransposeBackward0>)
# [[[ 0.15099122  0.09554478 -0.05826778 -0.10197903 -0.08624412
#     0.04691251 -0.12215472]]
#  [[ 0.34985161  0.31178944  0.04115072 -0.18708519 -0.13612159
#     0.03282586 -0.14295764]]
#  [[ 0.42666856  0.28547003  0.00443672 -0.20642571 -0.23312739
#    -0.0331053  -0.15905215]]
#  [[ 0.33494093  0.22813763  0.13078913 -0.20069858 -0.2059699
#    -0.00873538 -0.16356931]]
#  [[ 0.40352166  0.28857645  0.28591458 -0.24610013 -0.26066421
#     0.04338363 -0.1699052 ]]
#  [[ 0.39891811  0.35666413  0.16277961 -0.18774825 -0.29172435
#     0.00446361 -0.24067678]]]

print(torch_h)
print(numpy_h)
# tensor([[[ 0.3989,  0.3567,  0.1628, -0.1877, -0.2917,  0.0045, -0.2407]]],
#        grad_fn=<StackBackward0>)
# [[ 0.39891811  0.35666413  0.16277961 -0.18774825 -0.29172435  0.00446361
#   -0.24067678]]

print(torch_c)
print(numpy_c)
# tensor([[[ 0.5560,  0.6629,  0.2972, -0.9371, -0.5549,  0.0061, -0.7561]]],
#        grad_fn=<StackBackward0>)
# [[ 0.55596722  0.6628956   0.29717248 -0.93707451 -0.5548541   0.00609941
#   -0.7561093 ]]
  • GRU

import torch
import torch.nn as nn
import numpy as np

'''
使用pytorch实现GRU
手动实现GRU
对比
'''

#构造一个输入
length = 6
input_dim = 12
hidden_size = 7
x = np.random.random((length, input_dim))

def sigmoid(x):
    return 1/(1 + np.exp(-x))

#使用pytorch的GRU层
torch_gru = nn.GRU(input_dim, hidden_size, batch_first=True)


#将pytorch的GRU网络权重拿出来,用numpy通过矩阵运算实现GRU的计算
def numpy_gru(x, state_dict):
    weight_ih = state_dict["weight_ih_l0"].numpy()
    weight_hh = state_dict["weight_hh_l0"].numpy()
    bias_ih = state_dict["bias_ih_l0"].numpy()
    bias_hh = state_dict["bias_hh_l0"].numpy()
    #pytorch将3个门的权重拼接存储,我们将它拆开
    w_r_x, w_z_x, w_x = weight_ih[0:hidden_size, :], \
                        weight_ih[hidden_size:hidden_size * 2, :],\
                        weight_ih[hidden_size * 2:hidden_size * 3, :]
    w_r_h, w_z_h, w_h = weight_hh[0:hidden_size, :], \
                        weight_hh[hidden_size:hidden_size * 2, :], \
                        weight_hh[hidden_size * 2:hidden_size * 3, :]
    b_r_x, b_z_x, b_x = bias_ih[0:hidden_size], \
                        bias_ih[hidden_size:hidden_size * 2], \
                        bias_ih[hidden_size * 2:hidden_size * 3]
    b_r_h, b_z_h, b_h = bias_hh[0:hidden_size], \
                        bias_hh[hidden_size:hidden_size * 2], \
                        bias_hh[hidden_size * 2:hidden_size * 3]
    w_z = np.concatenate([w_z_h, w_z_x], axis=1)
    w_r = np.concatenate([w_r_h, w_r_x], axis=1)
    b_z = b_z_h + b_z_x
    b_r = b_r_h + b_r_x
    h_t = np.zeros((1, hidden_size))
    sequence_output = []
    for x_t in x:
        x_t = x_t[np.newaxis, :]
        hx = np.concatenate([h_t, x_t], axis=1)
        z_t = sigmoid(np.dot(hx, w_z.T) + b_z)
        r_t = sigmoid(np.dot(hx, w_r.T) + b_r)
        h = np.tanh(r_t * (np.dot(h_t, w_h.T) + b_h) + np.dot(x_t, w_x.T) + b_x)
        h_t = (1 - z_t) * h + z_t * h_t
        sequence_output.append(h_t)
    return np.array(sequence_output), h_t

torch_sequence_output, torch_h = torch_gru(torch.Tensor([x]))
numpy_sequence_output, numpy_h = numpy_gru(x, torch_gru.state_dict())
print(torch_sequence_output)
print(numpy_sequence_output)
# tensor([[[ 0.1594, -0.1153, -0.4586, -0.0186,  0.2189,  0.1135, -0.3679],
#          [ 0.4451, -0.2922, -0.7419, -0.1512,  0.3880,  0.1821, -0.5169],
#          [ 0.5038, -0.3299, -0.5477,  0.0747,  0.5901,  0.1773, -0.4521],
#          [ 0.4910, -0.3767, -0.7289,  0.0494,  0.7221,  0.1721, -0.5471],
#          [ 0.4542, -0.4090, -0.7239,  0.1361,  0.6370,  0.1548, -0.5263],
#          [ 0.4567, -0.2905, -0.5265,  0.2888,  0.7370,  0.0703, -0.3895]]],
#        grad_fn=<TransposeBackward1>)
# [[[ 0.15942519 -0.11533116 -0.45862967 -0.01859021  0.21886492
#     0.1134777  -0.36790504]]
#  [[ 0.44507494 -0.29216005 -0.74194526 -0.15115649  0.38796698
#     0.18213155 -0.51694817]]
#  [[ 0.50378448 -0.32986759 -0.54772077  0.07470304  0.5900535
#     0.17727659 -0.45206073]]
#  [[ 0.49101454 -0.37669122 -0.72891378  0.04940939  0.72214786
#     0.17210141 -0.54709095]]
#  [[ 0.45421076 -0.40898236 -0.72388504  0.13608405  0.63704706
#     0.15476695 -0.52628761]]
#  [[ 0.45674199 -0.2905453  -0.52648383  0.28878751  0.73695645
#     0.07033669 -0.38946996]]]
print(torch_h)
print(numpy_h)
# tensor([[[ 0.4567, -0.2905, -0.5265,  0.2888,  0.7370,  0.0703, -0.3895]]],
#        grad_fn=<StackBackward0>)
# [[ 0.45674199 -0.2905453  -0.52648383  0.28878751  0.73695645  0.07033669
#   -0.38946996]]

标签:gru,rnn,torch,np,cnn,output,hidden,numpy,size
From: https://www.cnblogs.com/yyyccs/p/18626678

相关文章

  • QRCNN-Attention多变量时序预测 基于分位数回归的卷积神经网络结合注意力机制的多变量
    目录Matlab基于QRCNN-Attention多变量时序预测基于分位数回归的卷积神经网络结合注意力机制的多变量时序预测效果分析基本介绍订阅专栏只能获取专栏内一份代码。程序设计参考资料Matlab基于QRCNN-Attention多变量时序预测基于分位数回归的卷积神经网络结合注意力......
  • 【AI学习笔记4】四种主流的神经网络 FNN、RNN、CNN、Transformer
     一、人工神经网络的分类最常用的人工神经网络(ArtificialNeuralNetwork,ANN)主要包括以下四种:前馈神经网络(FeedforwardNeuralNetwork,FNN)、循环神经网络(RecurrentNeuralNetwork,RNN)和卷积神经网络(ConvolutionalNeuralNetwork,CNN),还有当前最流行的大模型常用的Transformer神......
  • 瓦斯浓度预测 | 基于CNN-LSTM瓦斯浓度预测附matlab代码
    预测效果研究概述瓦斯浓度预测|基于CNN-LSTM瓦斯浓度预测附matlab代码基于CNN-LSTM(卷积神经网络-长短期记忆网络)模型进行瓦斯浓度预测是一种常见且有效的方法。这种模型结合了CNN对空间特征的提取能力和LSTM对时间序列数据的建模能力,适用于处理具有空间和时间关系......
  • 瓦斯浓度预测 | 基于CNN-BiLSTM-ATTENTION瓦斯浓度预测附matlab代码
    预测效果研究概述瓦斯浓度预测|基于CNN-BiLSTM-ATTENTION瓦斯浓度预测附matlab代码基于CNN-BiLSTM-ATTENTION的瓦斯浓度预测是一种先进的预测方法。以下是对该方法的详细分析:基于CNN-BiLSTM-Attention的瓦斯浓度预测是一种先进的预测方法,结合了卷积神经网络(CNN)、双......
  • GRU与LSTM的区别
    GRU(门控循环单元,GatedRecurrentUnit)和LSTM(长短期记忆网络,LongShort-TermMemory)是两种常见的递归神经网络(RNN)变种。它们主要用于处理序列数据(如文本、时间序列数据等),但它们在结构上有所不同,导致它们在一些任务上的表现不同。以下是它们的主要区别、优缺点:1.结构区别LSTM(......
  • 毕业设计:python车牌识别系统 CNN算法 卷积神经网络网络 深度学习 tensorflow(源码)✅
    python车牌识别系统CNN算法卷积神经网络网络深度学习tensorflow(源码)1、项目介绍技术栈:Python语言、CNN算法、tensorflow和keras、深度学习、opencv、pyqt5图形界面2、项目界面(1)上传图像进行车牌识别1(2)上传图像进行车牌识别2(3)上传图像进行车牌识别3(4)上传视......
  • 【深度学习】 零基础介绍卷积神经网络(CNN)
    零基础介绍卷积神经网络(CNN,ConvolutionalNeuralNetwork)是深度学习中的一种神经网络,特别擅长处理图像和视频等有空间结构的数据。假设我们在做一个“照片分类”的任务,比如判断一张照片中是猫还是狗。下面用一个通俗的例子来解释CNN的工作原理。看图的方式:模拟人眼当我......
  • 瓦斯浓度预测 | 基于CNN-BiLSTM瓦斯浓度预测附matlab代码
    预测效果研究概述瓦斯浓度预测|基于CNN-BiLSTM瓦斯浓度预测附matlab代码基于CNN-BiLSTM(卷积神经网络结合双向长短期记忆神经网络)的瓦斯浓度预测是一种先进的预测方法,它结合了CNN的空间特征提取能力和BiLSTM的时间序列处理能力,使得模型能够更准确地预测瓦斯浓度的变......
  • 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系
    人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训......
  • 使用YOLOv8网络构建一个完整垃圾检测识别系统,如何实现——垃圾检测识别_垃圾分类系统_
    垃圾检测识别/垃圾分类系统/垃圾识别-cnn网络-带UI界面该项目已训练好网络模型,配置好环境即可直接运行使用,运行效果见图像项目基本介绍:【网络】深度学习CNN网络yolo8网络【环境】python>=3.5ptorchopencvpyqt5【文件】训练预测全部源代码、训练好的模型,项目报告文......