import pandas as pd # 读取原始数据 df = pd.read_excel('D:\\work\\2\\配料原始表.xlsx', sheet_name='Sheet1') # 按品类分组并处理数据 grouped = df.groupby('品类名称') result_dfs = [] for category, group in grouped: # 筛选涨出数据并整理格式 gain_df = group[group['差异金额'] < 0].sort_values(by='差异金额').head(3) gain_df['亏涨类别'] = '涨出' gain_df['序号'] = range(1, len(gain_df)+1) gain_df = gain_df[['品类名称', '亏涨类别', '序号', '商品名称', '差异金额']] # 筛选亏损数据并整理格式 loss_df = group[group['差异金额'] > 0].sort_values(by='差异金额', ascending=False).head(3) loss_df['亏涨类别'] = '亏损' loss_df['序号'] = range(1, len(loss_df)+1) loss_df = loss_df[['品类名称', '亏涨类别', '序号', '商品名称', '差异金额']] # 合并该品类的亏损和涨出数据 category_result_df = pd.concat([loss_df, gain_df]) result_dfs.append(category_result_df) # 合并所有品类的数据 result_df = pd.concat(result_dfs) # 将结果转换为符合需求的格式 new_result = [] categories = result_df['品类名称'].unique() for category in categories: category_data = result_df[result_df['品类名称'] == category] gain_data = category_data[category_data['亏涨类别'] == '涨出'] loss_data = category_data[category_data['亏涨类别'] == '亏损'] new_row = [category] for i in range(1, 4): item = gain_data[gain_data['序号'] == i] new_row.append(item['商品名称'].values[0] + '\n' + str(item['差异金额'].values[0]) if len(item) > 0 else '') for i in range(1, 4): item = loss_data[loss_data['序号'] == i] new_row.append(item['商品名称'].values[0] + '\n' + str(item['差异金额'].values[0]) if len(item) > 0 else '') new_result.append(new_row) # 创建新的DataFrame new_df = pd.DataFrame(new_result, columns=['品类名称', '涨出最多商品名称及金额', '涨出第二多商品名称及金额', '涨出第三多商品名称及金额', '亏损第一多商品名称及金额', '亏损第二多商品名称及金额', '亏损第三多商品名称及金额']) # 将新表保存为Excel文件 new_df.to_excel('D:\\work\\2\\配料统计表新表优化.xlsx', index=False)
标签:category,loss,期望,效果,df,result,格式,data,gain From: https://www.cnblogs.com/haha1988/p/18623879