前言:
这一年经历了很多,裁员、焦虑、失眠、待业、甚至是家人的冷眼,人到中年很多东西身不由己,很多时候都是在被推着行走,年迈的父母,未长大的小孩,房贷车贷,这些都是促使我们努力生活,好好前进,都已经忘了活着的意义了,或者从来没有想明白过这个问题。这个问题太沉重,今天好好跟大家聊聊工作吧,我是如何转行大模型的,如何从困境中走出来的。
李白在诗中叹:“白日何短短,百年苦易满。”
流光容易把人抛,不知不觉间,2024年的倒计时钟声已经敲响。
这一年里,悲欢得失交织,聚散离合错落,我们在忙碌中认真生活,在平淡里精心度日。
历经一岁,辛苦一年,别忘了好好感谢自己。
新的一年即将到来,莫把旧事挂在心怀。
在这岁末年终之时,愿你清零过往,事过翻篇,活好当下,珍惜此生。
程序员35岁后,无人问津、被下岗,说到底还是中国互联网企业普遍短命和中国程序员新人不断涌现导致的,前者是岗位的缩减,后者是供应的增加,两者一叠加,35岁程序员就成了背锅侠。
大龄程序员和老医生一样都是非常金贵的,应该是各个单位的宝,区别在于医生由国家给兜底,程序员无人兜底。
是以、各位程序员老铁,要提前做好规划,程序员未必能干一辈子,但是工作要干一辈子。
别再犹豫转不转行,只看理论不行动了!
作为一位30+北漂男程序员,2个月零基础转行大模型,成功拿下月薪2w+的offer!今天我来分享一下我的亲身经历, 希望能给还在迷茫中的你一些启发!
转行前的“悲惨”生活
我,一个30+男单身青年,因为家里在一个小城市,大学时一心想报到大城市来,想尝试一下新的生活方式,所以选择了一个普通的二本学院在北京开启了我的大学生活。
因为选择的计算机专业,每天都很忙,也比较难 , 听学长学姐说我们专业毕业了也是比较累的,但是我当时励志在北京创出一番事业来,所以我觉得其实都还好。
后来我留在北京工作生活,成功入职一家软件开发公司,天天在高级写字楼工作,我想很多人都会很高兴在北京获得一份在高级写字楼里的工作,我也不例外,刚毕业时我也非常高兴获得这样一份工作,觉得自己离目标又进一步。
但是我到这里按年算起来,今年已经是第十年了。 这十年来我从一个基层码农到现在的中层,月薪也涨到了2w+,一直以来我都是一个对生活没有什么特殊要求的人。所以一直没有特别在意自己的想法。也没有思考过生活应该怎么过。
但是今年我生日时,我突然就意识到,我已经32了,**我好像从来没有自己的生活,**因为程序员每天都很忙,不是在这里测试就是在那里开发,**压力也很大,**每天根本没有时间思考其他的问题。
最基本的下班时间都不能够保证, 加班到十一二点是常态,有时候还是熬夜来找出BUG,**没有一点自己的时间。**朋友约我出去玩吃饭时间都不够,更不要说出去旅游什么的活动,从来都是没有我的,有时候放个小假都要随时随地的带着电脑。
用我们行业的话来说就是**“对于程序员来说,电脑就是子弹,要随时带着准备上战场”。我就在这样的状态下工作了十年**,生活过一团糟,身边的朋友都结婚生子,出国进修,自己创业,各种生活都有,而我却还是一个连自己的时间都没有的单身。而且工资十年来也没有涨很多。
所以就在这个32岁的生日之后的一个周五,处理完一周的工作,坐在工位上,**没有社交,**看着外面灯火通明的写字楼和深夜堵车的长龙。
回顾毕业后到现在的点点滴滴,觉得自己好像也没有完成自己的刚毕业时的目标,好像这么多年了还在原地踏步。
我这就是我呆在北京这么久的成果吗?一定不是!我萌生了转行的念头。
一、选择大模型
有了这个念头之后我就开始关注其他的行业岗位,但是我一个30+的没有其他行业的经验的人在第一步就被PASS了。这个时候刚好老家好朋友来找我玩,在跟他的交流中我了解到一个新的行业-大模型
而且随着AI技术的快速发展,尤其是大模型(如GPT系列、LLaMA系列等)的出现,AI行业迎来了新的发展机遇。对于大龄程序员来说,转行到AI大模型领域有几个重要的原因:
• 高薪机遇:AI大模型领域的职位通常薪酬较高,对于寻求职业发展的人来说是个好机会。
• 技术前沿:AI大模型是当前技术发展的热点,参与其中可以保持技术竞争力。
• 市场需求:随着AI技术的广泛应用,对AI大模型的需求不断增加,相关人才供不应求。
• 持续学习:AI领域发展迅速,持续学习可以保持个人的技术竞争力,避免职业停滞。
二、了解大模型
我们先来分析一下大模型这个领域。
实际上,大模型开发也分为两类,一类是算法工程师,另一个类是应用工程师。 算法工程师就是研究大模型算法,应用工程师是基于大模型做一些上层应用的开发。当然,后面这类也需要对大模型有或多或少的了解,毕竟,你做普通业务开发还得了解MySQL、Kafka、Redis等底层实现一样。
对**于第一类算法工程师,**要求就高了,不是说你想转行去做,就能做得了的。竞争门槛极其高,起码得是个985/211硕士毕业吧,知名期刊发表过相关论文,有扎实的机器学习、人工智能的理论功底。
如果还要考虑要不要转行去做的,建议你早点放弃吧。因为真的适合去做的,根本就不需要犹豫。
对于第二类应用工程师, 要求相对就低很多了。
像刚刚提到的大模型算法,算是有技术壁垒,而大模型应用就算是有业务壁垒的方向,他跟电商、物流、财务以及其他大型2B系统一样,业务较复杂。对于毕业五年以上的人,如果想要进入这些业务行业,就要比深耕这些行业多年的候选人,更没有优势,毕竟HR在筛选候选人的时候,还是倾向于选择业务匹配的候选人,特别是一些中高端的职位。
如果你现在的方向没有技术壁垒,也没有业务壁垒,那么,有业务壁垒的大模型方向,算是一个不错的选择。但是,不要总是看着别人碗里的饭香,别人的老婆更好,因为这种情况太常见了。今天的热门,也有可能会两三年后的天坑,就像当年的IOS、Android开发一样,没有那么多需求了。谁知道呢?
三、以及岗位和工作内容
大模型相关的岗位通常涉及数据处理、模型训练与调优、系统部署等多个环节。具体工作内容可能包括:
- 数据预处理:清洗、标注、转换等,确保输入数据的质量。
- 模型设计与实现:根据任务需求选择或设计合适的网络结构,并完成编码实现。
- 训练与优化:通过调整超参数、使用正则化技术等方式提高模型性能。
- 测试与评估:对训练好的模型进行测试,分析结果并作出相应的改进。
- 部署上线:将最终确定的模型集成到产品中,确保其稳定高效地运行。
四、尝试自学大模型
自学大模型是一个持续学习的过程,建议从基础开始逐步深入。可以从学习线性代数、概率论等数学基础知识做起,然后逐渐过渡到机器学习、深度学习等高级主题。利用开源工具如TensorFlow、PyTorch等实践操作,结合具体的案例来加深理解和记忆。同时,积极参加线上线下的技术交流活动,与其他从业者分享经验,共同进步。
程序员转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从程序员转向大模型领域:
1、了解基础知识:
数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。
编程语言:学习Python,因为它是最受欢迎的机器学习和数据科学编程语言。
2、学习机器学习理论:
机器学习基础:了解机器学习的基本概念,包括监督学习、非监督学习、强化学习等。
深度学习:深入学习神经网络的基本结构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。
3、掌握数据处理技能:
数据清洗和预处理:学习如何处理和清洗数据,以便为大模型准备高质量的输入数据。
数据分析和可视化:学习使用工具(如Pandas、NumPy、Matplotlib)进行数据分析和可视化。
4、实践项目经验:
在线课程和项目:参加在线课程,如Coursera、edX、Udacity上的机器学习和深度学习课程,并完成相关项目。
开源贡献:参与开源项目,为现有的机器学习模型或工具贡献代码。
5、学习框架和工具:
TensorFlow和PyTorch:学习这两个最流行的深度学习框架之一,通过实践来掌握它们的使用。
模型部署:了解如何将模型部署到生产环境,学习使用Flask或Django等Web框架。
7、专业领域深入:
自然语言处理(NLP):如果对处理文本数据感兴趣,深入学习NLP,了解词嵌入、序列模型、Transformer模型等。
计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等。
8、建立个人项目:
创建个人作品集:开发一些个人项目,如构建一个简单的推荐系统、情感分析工具或图像识别应用,并将它们添加到您的GitHub仓库中。
9、参与社区和会议:
加入AI社区:参与线上论坛、社交媒体群组和本地Meetup,与其他机器学习爱好者交流。
参加会议和研讨会:参加机器学习和AI相关的会议和研讨会,以了解最新的研究和发展趋势
。
10、考虑进修教育:
研究生学位:如果您希望更深入地学习,可以考虑攻读计算机科学或数据科学的研究生学位。
专业证书:获得相关的专业证书,如谷歌的机器学习工程师证书。
11、职业规划:
职业转型:在您的简历中强调新的技能和项目经验,开始申请与大模型相关的工作或实习机会。
持续学习:大模型和AI领域不断进步,持续学习新技术和算法对于保持竞争力至关重要。
通过以上步骤,您可以从程序员成功转型为大模型领域的专业人士。记住,这个过程需要时间和努力,但随着您的技能和知识的增长,您将能够在这个新兴且充满机遇的领域中取得成功。
别再犹豫转不转行,只看理论不行动了!
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等,