本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
在本文中,我们将探讨如何使用 Python 中的 YOLO(You Only Look Once)和 EasyOCR(Optical Character Recognition)从视频文件中实现车牌检测。这种方法利用深度学习实时检测和识别车牌。
先决条件
在开始之前,请确保已安装以下 Python 包:
pip install opencv-python ultralytics easyocr Pillow numpy
实现步骤
步骤 1:初始化库
我们将首先导入必要的库。我们将使用 OpenCV 进行视频处理、使用 YOLO 进行对象检测以及使用 EasyOCR 读取检测到的车牌上的文字。
import cv2
from ultralytics import YOLO
import easyocr
from PIL import Image
import numpy as np
# Initialize EasyOCR reader
reader = easyocr.Reader(['en'], gpu=False)
# Load your YOLO model (replace with your model's path)
model = YOLO('best_float32.tflite', task='detect')
# Open the video file (replace with your video file path)
video_path = 'sample4.mp4'
cap = cv2.VideoCapture(video_path)
# Create a VideoWriter object (optional, if you want to save the output)
output_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 30.0, (640, 480)) # Adjust frame size if necessary
步骤2:处理视频帧
我们将读取视频文件中的每一帧,对其进行处理以检测车牌,然后应用 OCR 来识别车牌上的文字。为了提高性能,我们可以跳过每三帧的处理。
# Frame skipping factor (adjust as needed for performance)
frame_skip = 3 # Skip every 3rd frame
frame_count = 0
while cap.isOpened():
ret, frame = cap.read() # Read a frame from the video
if not ret:
break # Exit loop if there are no frames left
# Skip frames
if frame_count % frame_skip != 0:
frame_count += 1
continue # Skip processing this frame
# Resize the frame (optional, adjust size as needed)
frame = cv2.resize(frame, (640, 480)) # Resize to 640x480
# Make predictions on the current frame
results = model.predict(source=frame)
# Iterate over results and draw predictions
for result in results:
boxes = result.boxes # Get the boxes predicted by the model
for box in boxes:
class_id = int(box.cls) # Get the class ID
confidence = box.conf.item() # Get confidence score
coordinates = box.xyxy[0] # Get box coordinates as a tensor
# Extract and convert box coordinates to integers
x1, y1, x2, y2 = map(int, coordinates.tolist()) # Convert tensor to list and then to int
# Draw the box on the frame
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) # Draw rectangle
# Try to apply OCR on detected region
try:
# Ensure coordinates are within frame bounds
r0 = max(0, x1)
r1 = max(0, y1)
r2 = min(frame.shape[1], x2)
r3 = min(frame.shape[0], y2)
# Crop license plate region
plate_region = frame[r1:r3, r0:r2]
# Convert to format compatible with EasyOCR
plate_image = Image.fromarray(cv2.cvtColor(plate_region, cv2.COLOR_BGR2RGB))
plate_array = np.array(plate_image)
# Use EasyOCR to read text from plate
plate_number = reader.readtext(plate_array)
concat_number = ' '.join([number[1] for number in plate_number])
number_conf = np.mean([number[2] for number in plate_number])
# Draw the detected text on the frame
cv2.putText(
img=frame,
text=f"Plate: {concat_number} ({number_conf:.2f})",
org=(r0, r1 - 10),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.7,
color=(0, 0, 255),
thickness=2
)
except Exception as e:
print(f"OCR Error: {e}")
pass
# Show the frame with detections
cv2.imshow('Detections', frame)
# Write the frame to the output video (optional)
out.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Exit loop if 'q' is pressed
frame_count += 1 # Increment frame count
# Release resources
cap.release()
out.release() # Release the VideoWriter object if used
cv2.destroyAllWindows()
代码说明:
初始化 EasyOCR:初始化 EasyOCR 阅读器以进行英文文本识别。
加载 YOLO 模型:YOLO 模型从指定路径加载。请确保将此路径替换为您的模型路径。
读取视频帧:使用 OpenCV 打开视频文件,VideoWriter如果要保存输出,则初始化。
帧处理:读取并调整每一帧的大小。该模型预测车牌位置。
绘制预测:在帧上绘制检测到的边界框。包含车牌的区域被裁剪以进行 OCR 处理。
应用 OCR:EasyOCR 从裁剪的车牌图像中读取文本。检测到的文本和置信度分数显示在框架上。
输出视频:处理后的帧可以显示在窗口中,也可以选择保存到输出视频文件中。
THE END !
文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。
标签:plate,AI,frame,YOLO,cv2,EasyOCR,number From: https://blog.csdn.net/csdn_xmj/article/details/144145668