首页 > 其他分享 >转载:【AI系统】模型压缩基本介绍

转载:【AI系统】模型压缩基本介绍

时间:2024-12-12 10:47:31浏览次数:3  
标签:AI 压缩算法 压缩 转载 计算资源 模型 存储空间

随着神经网络模型的复杂性和规模不断增加,模型对存储空间和计算资源的需求越来越多,使得部署和运行成本显著上升。模型压缩的目标是通过减少模型的存储空间、减少计算量或提高模型的计算效率,从而在保持模型性能的同时,降低模型部署的成本。模型压缩的目标可以概括为以下几点:

  1. 减少模型显存占用:通过压缩模型参数或使用更高效的表示方式,可以显著减少模型所需的存储空间,从而降低模型在部署和执行过程中的存储成本。

  2. 加快推理速度:通过减少模型计算过程中的乘法和加法操作,可以降低模型的计算开销,达到模型运算加速的目的。

  3. 减少精度损失:在模型压缩过程中,尽可能地减小对模型性能的影响,保持模型在任务上的精度损失最小化。这需要在压缩技术选择和参数调优过程中进行细致的权衡和实验验证,确保模型在压缩后仍能够保持较高的性能水平。

模型压缩四件套

模型压缩的目标是降低表示、计算权重和中间激活的成本,这些成本占模型成本的大部分。我们根据如何降低权重和激活成本对模型压缩算法进行分类,有如下四大类别:

  1. 模型量化(Quantization):通过减少模型参数的表示精度,来降低模型的存储空间和计算复杂度。

  2. 参数剪枝(Pruning):通过删除模型中的不重要连接或参数,来减少模型的大小和计算量。

  3. 知识蒸馏(Knowledge Distillation):指通过构建一个轻量化的小模型(学生模型),利用性能更好教师模型的信息来监督训练学生模型,以期达到更好的性能和精度。

  4. 低秩分解(low-rank factorization):通过将模型中具体执行计算的矩阵分解为低秩的子矩阵,从而减少模型参数的数量和计算复杂度。低秩分解中,矩阵被分解为两个或多个低秩矩阵的乘积形式。

此外,模型压缩算法分为低成本和高成本算法,与上述分类标准无关。高成本的压缩算法需要基于大型数据集进行再训练过程。因此,它们可以生成更准确的压缩模型,但需要更多的时间来压缩模型。另一方面,低成本压缩算法仅基于少量校准数据执行简单的权重调整过程,但是需要注意可能的精度损失,因此训练后量化是常用的低成本压缩算法。

模型压缩流程

如下图所示,模型压缩通常处于机器学习模型训练和生产部署之间的阶段。它在模型训练完成后,准备将模型部署到目标环境之前进行。

image

模型压缩应用场景

模型压缩技术在许多应用场景中都有广泛的应用,特别是在资源受限的环境下或对模型性能要求较高的场景。以下是一些常见的模型压缩应用场景:

  1. 移动端应用:在移动设备上部署神经网络模型时,由于存储空间和计算资源的限制,模型压缩变得至关重要。模型压缩可以使得模型在移动设备上运行更加高效,并降低对设备资源的消耗,从而实现更好的用户体验。

  2. 物联网设备:在物联网(IoT)领域,许多设备的存储和计算资源极为有限。模型压缩可以帮助将神经网络模型部署到这些设备上,并在保持模型性能的同时减少资源消耗。

  3. 在线模型服务系统:在推荐、搜索等在线系统中,模型需要实时地处理大量的用户数据,模型压缩可以提高系统的响应速度和吞吐量,从而改善用户体验并降低系统的成本。

  4. 大模型压缩:大语言模型通常具有数以亿计的参数和复杂的网络结构,对存储空间和计算资源要求巨大。通过模型压缩技术,可以将大模型压缩为更小、更高效的版本,以适应资源受限的部署环境,并在保持模型性能的同时降低计算成本。

  5. 自动驾驶:在自动驾驶领域,由于对实时性能和计算资源的要求,模型压缩可以帮助优化神经网络模型以适应相应的场景。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~
转载自:| https://www.cnblogs.com/ZOMI/articles/18561211 | header |
| ---------------------------------------------- | ------ |
| | |

标签:AI,压缩算法,压缩,转载,计算资源,模型,存储空间
From: https://www.cnblogs.com/ewr67/p/18601872

相关文章

  • 转载:【AI系统】知识蒸馏原理
    本文将介绍知识蒸馏(KnowledgeDistillation,KD)的原理,这是一种通过从大型的教师模型向小型的学生模型转移知识来实现模型压缩和优化的技术。知识蒸馏的核心思想是利用教师模型在大量数据上积累的丰富知识,通过特定的蒸馏算法,使学生模型能够学习并吸收这些知识,从而达到与教师模型相......
  • 转载:【AI系统】模型剪枝
    本文将介绍模型剪枝的概念、方法和流程,这是一种通过移除神经网络中的冗余或不重要参数来减小模型规模和提高效率的模型压缩技术。剪枝不仅可以减少模型的存储和计算需求,还能在保持模型性能的同时提高模型的泛化能力。我们将探讨剪枝的定义、分类、不同阶段的剪枝流程,以及多种剪枝......
  • 转载:【AI系统】训练后量化与部署
    本文将会重点介绍训练后量化技术的两种方式:动态和静态方法,将模型权重和激活从浮点数转换为整数,以减少模型大小和加速推理。并以KL散度作为例子讲解校准方法和量化粒度控制来平衡模型精度和性能。训练后量化的方式训练后量化的方式主要分为动态和静态两种。动态离线量化动态......
  • 转载:【AI系统】模型转换流程
    用户在使用AI框架时,可能会遇到训练环境和部署环境不匹配的情况,比如用户用Caffe训练好了一个图像识别的模型,但是生产环境是使用TensorFlow做预测。因此就需要将使用不同训练框架训练出来的模型相互联系起来,使用户可以进行快速的转换。模型转换主要有直接转换和规范式转换两......
  • 转载:【AI系统】自定义计算图 IR
    模型转换涉及对模型的结构和参数进行重新表示。在进行模型转换时,通常需要理解模型的计算图结构,并根据目标格式的要求对其进行调整和转换,可能包括添加、删除或修改节点、边等操作,以确保转换后的计算图能够正确地表示模型的计算流程。本文主要介绍自定义计算图的方法以及模型转换的......
  • 转载:【AI系统】模型转换基本介绍
    模型转换的主要任务是实现模型在不同框架之间的流转。随着深度学习技术的发展,训练框架和推理框架的功能逐渐分化。训练框架通常侧重于易用性和研究人员的算法设计,提供了分布式训练、自动求导、混合精度等功能,旨在让研究人员能够更快地生成高性能模型。而推理框架则更专注于针对特......
  • 转载:【AI系统】Kernel 层架构
    推理引擎的Kernel层通常是推理引擎中用于执行底层数学运算的组件。在神经网络模型推理过程中,需要对大量数据进行高效的数学运算,如矩阵乘法、卷积、池化等。Kernel层就是实现这些运算的核心部分,它直接影响着推理引擎的速度和效率,因此本文将会重点介绍Kernel层相关的内容。Ker......
  • 转载:【AI系统】计算图的优化策略
    除了前面提到的算子替换和算子前移等内容,本文内容将深入探讨计算图的优化策略,我们将细致分析图优化的其他重要内容,如改变数据节点的数据类型或存储格式来提升模型性能,以及优化数据的存储和访问方式以降低内存占用和数据访问时间。以上内容的理解和掌握,对于高效利用计算资源,提升算......
  • 转载:【AI系统】Winograd 算法
    在上一篇文章的介绍中,介绍了Im2Col技术,它通过将三维张量重新排列成矩阵形式,然后利用基于内存访问局部性的优化库如GEMM(通用矩阵乘法库)加速计算。随后,还探讨了空间组合优化,这一种利用局部性原理来提升效率的技术。在本文将重点介绍Winograd优化算法,它是矩阵乘优化方法中Copp......
  • 转载:【AI系统】Im2Col 算法
    作为早期的AI框架,Caffe中卷积的实现采用的是基于Im2Col的方法,至今仍是卷积重要的优化方法之一。从上一篇文章的介绍中可以看到,在CNN中卷积直接计算的定义中,卷积核在输入图片上滑动,对应位置的元素相乘后相加求和,滑窗的大小由卷积核决定。由于滑动操作时的窗口的数据横向是......