首页 > 其他分享 >深度学习在岩土工程中的应用与实践

深度学习在岩土工程中的应用与实践

时间:2024-11-15 13:46:02浏览次数:3  
标签:4.1 岩土 模型 实践 深度 耦合 FISH 模拟

在深度学习与岩土工程融合的背景下,科研的边界持续扩展,创新成果不断涌现。从基本物理模型的构建到岩土工程问题的复杂模拟,从数据驱动的分析到工程问题的智能解决,深度学习正以前所未有的动力推动岩土工程领域的革新。据调查,目前在岩土工程领域内,深度学习的应用主要集中在以下几个方面:

1、预测模型开发:使用深度学习来预测土壤和岩石的力学行为,例如土压力、剪切强度等。

2、数据驱动特性分析:通过机器学习算法分析大量实验数据,以识别土壤和岩石的非线性特性。

3、地质结构识别:应用深度学习技术如卷积神经网络(CNN),识别和分类地质结构和岩石类型。

4、地下设施稳定性分析:利用深度学习模型评估地下设施(隧道、矿井)的稳定性和潜在风险。

5、环境影响评估:使用深度学习模拟和预测岩土工程活动对环境(地下水流、土壤污染)影响。

6、灾害风险评估:应用深度学习模型来评估地震、滑坡等自然灾害对岩土工程结构的潜在风险

7、智能监测和诊断:利用深度学习进行岩土工程结构的实时监测,及时发现问题并进行诊断

8、自动化设计和优化:使用深度学习算法自动设计岩土工程解决方案,优化工程设计参数。

工程

物理模型基础

1. 岩土工程中的基本物理模型及工程问题

1.1.饱和土的一维渗流固结模型(扩散方程)及实际工程应用

1.2.达西定律与饱和土渗流方程(Laplace equation)及适用性

1.3.非饱和土渗流数学模型(Richards方程)及实际工程应用

1.4.工程应用中的正问题与反问题,通过具体案例区分

2. 基本物理模型的求解方法

2.1.边界条件:通过图解和实际工程案例,讲解边界条件在物理模型中的作用,如无流边界、狄利克雷边界等

2.2.线性方程的解析解法

2.2.1. 直接解法:分离变量法及行波变换法

2.2.2. 间接解法:积分变换法

实战演练:分离变量法求固结方程的解析解

2.3.非线性方程的解析解法

2.3.1. 直接解法:双线性方法

2.3.2. 间接解法:反散射变换

实战演练:双线性方法求KdV方程的解析解

2.4.线性与非线性方程的数值解法

2.4.1. 有限差分法

2.4.2. 有限单元法

2.4.3. 谱方法

实战演练:时间分布Fourier方法求Boussinesq方程的数值解

Python及神经网络构建基础

3. Python基本指令及库

3.1.Python基础:通过交互式编程环境,教授Python基础,包括数据类型和逻辑运算等

3.2.科学计算库:介绍Numpy和Matplotlib,并讲授如何使用它们进行科学计算和数据可视化

实战演练:基于简单Numpy指令解决岩石图像分类问题

3.3.神经网络构建:通过简单的实例,如使用Numpy构建感知机,教授神经网络的基本概念

3.4.深度学习框架:通过Tensorflow和Pytorch的实例,教授如何构建和训练用于岩土工程问题的深度学习模型

实战演练:基于Pytorch模块求解渗透系数及其影响因素间关系的量化模型

数据—物理

双驱动神经网络

4. 深度学习基本原理与数据—物理双驱动神经网络

4.1.深度学习基础

4.1.1. 神经元及激活函数

4.1.2. 前馈神经网络与万能逼近定律

4.1.3. 多种深度神经网络

4.1.4. 自动微分方法

4.1.5. 深度神经网络的损失函数

4.1.6. 最优化方法

4.2.数据—物理双驱动神经网络方法

4.2.1. 物理信息神经网络(PINN)的工作原理及应用介绍

4.2.2. 深度算子网络(DeepONet)的工作原理及应用介绍

4.2.3. 物理深度算子网络(PI-DeepONet)的工作原理及应用介绍

实战演练:利用DeepXDE框架解决饱和土体的固结问题

案例实践

论文复现

5. 动手实践:论文复现

论文实例解读与实战(一):PINN模型在固结问题中的应用

参考文献:Application of improved physics-informed neu-ral networks for   nonlinear consolidation problems with continuous drainage boundary conditions

Ø  神经网络架构的选择与设计

Ø  固结方程作为约束的损失函数设计

Ø  训练及预测

Ø  构建并训练一个固结问题的PINN模型

Ø  硬约束边界条件

论文实例解读与实战(二):PINN模型在非饱和渗透模拟中的应用

参考文献:Surrogate modeling for unsaturated infiltration via the physics and   equality-constrained artificial neural   network

Ø  PINN的改进—PECANN模型

Ø  损失函数的设计:数据拟合项与物理定律项的平衡

Ø  训练数据的生成:合成数据与实验数据(多保真PINN模型)

Ø  PINN用于非饱和渗透模拟的优势(不确定性问题)

论文实例解读与实战(三):PINN模型在非线性波动方程中的应用

参考文献:Explorations of certain nonlinear waves of the  Boussinesq    and  Camassa–Holm    equations  using   physics-informed neural networks

Ø  Boussinesq方程与Camassa-Holm方程的数值求解难点

Ø   PINN的改进—MPINN模型

Ø   PINN的优势、劣势及未来发展方向

PFC离散元数值模拟仿真技术与应用

课  程

内容

理论基础及PFC入门

1 岩土工程数值模拟方法概述

1.1基于网格的模拟方法:

有限元、有限差分、大变形处理CEL、ALE、XFEM

1.2基于点的模拟方法:

离散单元法DEM、光滑粒子流方法SPH、物质点法MPM

1.3基于块体的模拟方法

2  离散元与PFC软件操作

2.1 离散元的基本原理(计算原理、宏观参量与微观参量的关系)

2.2 PFC软件界面操作

2.3文件系统

2.4显示控制

2.5帮助文档的使用

FISH、PYTHON语言及COMMAND命令

3 PFC软件的计算控制方法

3.1 PFC计算控制的语言逻辑

3.2 FISH语言(基本语法、函数定义与调用、创建模型、控制模拟过程、处理模拟结果、FISH Callback操作等)

3.3 COMMAND命令(命令结构、创建模型、状态监测与绘图、控制模拟过程、求解控制、状态查询、与FISH语言的混合使用等)

3.4 PYTHON语言(基本语法、Numpy库的使用、接口的使用等)

离散元模拟方法

4 离散元模拟方法

4.1离散元数值试样的生成方法

4.1.1单元试样模型生成方法

4.1.2边值问题(场地)模型生成方法

4.1.3连续—非连续耦合模型生成方法

4.1.4复杂颗粒形状的模拟方法(Rblock方法、Clump方法)

4.2接触模型选择与参数标定

4.2.1离散元接触模型的选择原则—12个内置模型

4.2.2接触模型参数的标定方法与参数意义—以胶结颗粒材料(岩石、胶结砂土等)为例,讲授参数标定步骤

4.3其他问题

4.3.1模型边界条件施加方法(达到初始平衡状态、开挖类模拟、填筑类模拟、加载类模拟、周期性边界、应力伺服)

4.3.2各种阻尼的选择(粘滞阻尼、局部阻尼、滞回接触模型)

4.3.3时步与时步缩放(静力、动力问题时步及相关命令)

4.3.4试样尺寸、颗粒数量、级配选择

4.3.5 并行计算

土体单元试验模拟

5 土体单元试验模拟方法

5.1常规三轴剪切试验模拟(命令流+FISH)

5.1.1建模方法与注意事项

5.1.2模拟结果分析

5.1.3模拟结果可视化

5.2真三轴剪切模拟(命令流+FISH)

5.2.1真三轴加载路径的模拟

5.2.2真三轴强度准则

5.2.3微观结构演变过程

5.3不排水三轴剪切模拟(命令流+FISH)

5.4循环三轴剪切的模拟(命令流+FISH)

5.5颗粒破碎过程模拟(命令流+FISH)

5.6岩石(胶结颗粒)材料的剪切过程模拟

5.7离散元模拟与弹塑性本构模型

工程实例分析

6 工程实例分析

6.1活动门试验模拟(命令流+FISH)

6.1.1试样级配控制

6.1.2应力状态控制

6.1.3孔隙比的控制

6.1.4 活动门加载的实现

6.2盾构隧道掌子面稳定性(命令流+FISH)

6.2.1主动失稳模式

6.2.2被动失稳模式

6.3节理岩体中的硐室开挖稳定性(命令流+FISH)

6.3.1节理裂隙岩体的生成

6.3.2初始应力状态控制

6.3.3 开挖模拟

PFC3D与FLAC3D耦合模拟与分析

7 离散—连续域耦合模拟

7.1离散—连续耦合模拟方法

Ø  与FLAC3D中一维结构单元耦合

Ø  与FLAC3D中二维壳结构单元或三维实体单元的面的耦合

Ø  与FLAC3D中三维实体单元的耦合(实例)

7.2离散—连续域参数匹配

7.3基于离散—连续域耦合的三轴剪切试验模拟(命令流+FISH)

实例操作:二维壳结构单元耦合(壳单元模拟橡胶膜-创建耦合墙-施加应力边界等向压缩-剪切模拟)

7.4基于离散—连续域耦合的地基承载力分析(命令流+FISH)

实例操作:基于Punch indentation案例的修改与实现

PFC-CFD耦合模拟与分析

8 流固耦合分析

8.1颗粒与流体相互作用理论(CFD模块概况、体积平均粗网格法、颗粒与流体相互作用计算)

8.2流固耦合框架

Ø  CFD网格、流体域边界设置、网格导入、网格流体参数设置

Ø  孔隙率计算

Ø  耦合时间间隔、耦合时步、网格与颗粒尺寸

Ø  耦合步骤

8.3实例操作分析(命令流+FISH)

8.3.1单向耦合

8.3.2孔隙介质中Darcy流模拟(Fipy应用)

8.3.3 与FLAC3D的渗流耦合模拟

 【Nature】“深度岩土探秘:PFC技术引领数值模拟新革命!”

 

标签:4.1,岩土,模型,实践,深度,耦合,FISH,模拟
From: https://blog.csdn.net/2301_80236428/article/details/143682388

相关文章

  • 如何深度学习SpringBoot?
    SpringBoot对于SpringBoot,我们都知道他的设计初衷是解决Spring各版本配置工作过于繁重的问题,简化初始搭建流程、降低开发难度而出现的。可以说用SpringBoot开发,我们在配置上是不用花费太多时间的。我们常常看到这样一种现象:面对Spring繁重配置工作,要是一位初学者仅仅掌握......
  • 李沐《动手学深度学习》kaggle树叶分类(ResNet18无预训练)python代码实现
    前言    在尝试这个树叶分类之前,作者仅仅看完了ResNet残差网络一章,并没有看后面关于数据增强的部分,这导致在第一次使用最原始的ResNet18直接跑完训练数据之后的效果十分的差,提交kaggle后的准确仅有20%左右。本文最后依然使用未经预训练的手写ResNet18网络,但做了一定的......
  • 深度学习(IoU、GIoU、DIoU、CIoU)
    目录1.IoU2.GIoU3.DIoU4.CIoU5.区别总结在计算机视觉领域,特别是在目标检测任务中,损失函数用于衡量预测边界框与真实边界框之间的差异。常用的损失函数包括IoU(IntersectionoverUnion)、GIoU(GeneralizedIntersectionoverUnion)、DIoU(DistanceIntersectionoverUnion)......
  • 慈不带兵、义不经商,下半句更狠!(深度)
     一、最大的敌人并不是精明的坏人,而是缺乏智慧的好人。因为当一个坏人足够精明的时候,也就是做到绝对自私的时候,他反而容易走向觉悟:明白只有开始利他,才能真正把别人的变成自己的。相反,当一个好人没有足够的智慧,他的行为对别人和社会来说,常常是好心帮倒忙,好心未必就有好结果。......
  • xshell7上实现MapReduce初级编程实践:对给定的表格进行信息挖掘
      实验环境:操作系统:Linux(Centos7);  Xsell7Hadoop版本:3.4.0(这里的版本根据自己的修改,可能小部分版本的Hadoop不适用于本文实验)下面给出一个child-parent的表格,要求挖掘其中的父子辈关系,给出祖孙辈关系的表格。输入文件内容如下:(保证之间空格为1,否则可能输出会出错)chi......
  • 深度学习面试的时候,如何回答1x1卷积的作用
    11月了,秋招已经开始了。不知最近有没有同学在投简历面试呢?回想起几年前我面试某大厂的时候,被问到了很多深度学习相关的知识,那时的我懂的不多,可以说是被面试官360度无死角蹂躏。那次面试,印象最深的是问了很多与卷积相关的问题,导致我后来工作一段时间看到卷积就时不时的去查些资......
  • 【简单的基于循环神经网络(RNN)的模型(深度学习经典代码实现)】
    importtorch#Code–Parametersinput_size=4hidden_size=4num_layers=1batch_size=1seq_len=5#Code–PrepareDataidx2char=['e','h','l','o']x_data=[1,0,2,2,3]y_data=[3,1,2,3,2]one_hot......
  • 【基于PyTorch的简单多层感知机(MLP)神经网络(深度学习经典代码实现)】
    importtorchfromtorchvisionimporttransformsfromtorchvisionimportdatasetsfromtorch.utils.dataimportDataLoaderimporttorch.nn.functionalasFimporttorch.optimasoptim#准备数据集batch_size=64transform=transforms.Compose([transforms.......
  • 书生实战营第四期-基础岛第六关-OpenCompass 评测书生大模型实践
    基础任务一、使用OpenCompass评测浦语API 1、创建用于评测conda环境condacreate-nopencompasspython=3.10condaactivateopencompasscd/rootgitclone-b0.3.3https://github.com/open-compass/opencompasscdopencompasspipinstall-e.pipinstall......
  • 深度学习平台术语
    以下是开源深度学习平台kubeflow需要了解的相关术语。掌握它们,会更加理解搭建一个深度学习平台所需要的概念或框架。1.RPC提供远程调用对方的函数的框架。远程过程调用带来的新问题:CallID映射。序列化和反序列化。网络传输https://www.zhihu.com/question/255366952.......