标签:kernel 架构 nn 卷积 self 神经网络 3x3 Conv2d size
提示词:
给出{xxx}的网络结构表格,包含层名称、类型、输入大小(HWC),输出大小(HWC)、核尺寸、步长、参数数量
AlexNet
层名称 |
类型 |
输入大小(HWC) |
输出大小(HWC) |
核尺寸 |
步长 |
参数数量 |
输入层 |
输入 |
227x227x3 |
- |
- |
- |
0 |
Conv1 |
卷积层 |
227x227x3 |
55x55x96 |
11x11 |
4 |
961111*3 + 96 = 34944 |
MaxPool1 |
最大池化层 |
55x55x96 |
27x27x96 |
3x3 |
2 |
0 |
LRN1 |
局部响应归一化 |
27x27x96 |
27x27x96 |
- |
- |
- |
Conv2 |
卷积层 |
27x27x96 |
27x27x256 |
5x5 |
1 |
25655*96 + 256 = 614656 |
MaxPool2 |
最大池化层 |
27x27x256 |
13x13x256 |
3x3 |
2 |
0 |
LRN2 |
局部响应归一化 |
13x13x256 |
13x13x256 |
- |
- |
- |
Conv3 |
卷积层 |
13x13x256 |
13x13x384 |
3x3 |
1 |
38433*256 + 384 = 885120 |
Conv4 |
卷积层 |
13x13x384 |
13x13x384 |
3x3 |
1 |
38433*384 + 384 = 1327488 |
Conv5 |
卷积层 |
13x13x384 |
13x13x256 |
3x3 |
1 |
25633*384 + 256 = 884992 |
MaxPool3 |
最大池化层 |
13x13x256 |
6x6x256 |
3x3 |
2 |
0 |
FC6 |
全连接层 |
6x6x256 |
4096 |
- |
- |
66256*4096 + 4096 = 37752832 |
FC7 |
全连接层 |
4096 |
4096 |
- |
- |
4096*4096 + 4096 = 16781312 |
FC8 |
全连接层 |
4096 |
1000 |
- |
- |
4096*1000 + 1000 = 4194304 |
PyTorch 源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2), # Conv1
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # MaxPool1
nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), # LRN1
nn.Conv2d(96, 256, kernel_size=5, padding=2), # Conv2
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # MaxPool2
nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), # LRN2
nn.Conv2d(256, 384, kernel_size=3, padding=1), # Conv3
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1), # Conv4
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1), # Conv5
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # MaxPool3
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096), # FC6
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096), # FC7
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes), # FC8
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
# 创建AlexNet模型实例
model = AlexNet(num_classes=1000)
print(model)
LENET5
网络结构
层名称 |
类型 |
输入大小 (HWC) |
输出大小 (HWC) |
核尺寸 |
步长 |
参数数量 |
输入层 |
输入 |
32x32x1 |
32x32x1 |
- |
- |
0 |
C1 |
卷积层 |
32x32x1 |
28x28x6 |
5x5 |
1 |
(5x5x1+1)x6 = 156 |
S2 |
下采样层 |
28x28x6 |
14x14x6 |
2x2 |
2 |
0 |
C3 |
卷积层 |
14x14x6 |
10x10x16 |
5x5 |
1 |
(5x5x6+1)x16 = 2416 |
S4 |
下采样层 |
10x10x16 |
5x5x16 |
2x2 |
2 |
0 |
C5 |
卷积层 |
5x5x16 |
1x1x120 |
5x5 |
1 |
(5x5x16+1)x120 = 48120 |
F6 |
全连接层 |
1x1x120 |
1x1x84 |
- |
- |
120x84 + 84 = 10164 |
输出层 |
全连接层 |
1x1x84 |
1x1x10 |
- |
- |
84x10 + 10 = 850 |
PyTorch 代码
import torch
import torch.nn as nn
import torch.nn.functional as F
class LeNet5(nn.Module):
def __init__(self, num_classes=10):
super(LeNet5, self).__init__()
# Convolutional layer (C1)
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)
# Subsampling layer (S2)
self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)
# Convolutional layer (C3)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
# Subsampling layer (S4)
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
# Convolutional layer (C5)
self.conv3 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
# Fully connected layer (F6)
self.fc1 = nn.Linear(in_features=120, out_features=84)
# Output layer
self.fc2 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
# C1
x = self.conv1(x)
x = F.relu(x)
# S2
x = self.pool1(x)
# C3
x = self.conv2(x)
x = F.relu(x)
# S4
x = self.pool2(x)
# C5
x = self.conv3(x)
x = F.relu(x)
# Flatten the output for the fully connected layer
x = x.view(-1, self.num_flat_features(x))
# F6
x = self.fc1(x)
x = F.relu(x)
# Output layer
x = self.fc2(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
# Example of creating the LeNet5 model
model = LeNet5(num_classes=10)
print(model)
# Example input tensor (batch size of 1, 1 channel, 32x32 image)
input_tensor = torch.randn(1, 1, 32, 32)
# Forward pass through the model
output = model(input_tensor)
print(output)
VGG16
层名称 |
类型 |
输入大小 (HWC) |
输出大小 (HWC) |
核尺寸 |
步长 |
参数数量 |
Input |
- |
224x224x3 |
- |
- |
- |
0 |
Conv1_1 |
Conv2D |
224x224x3 |
224x224x64 |
3x3 |
1 |
1792 |
Conv1_2 |
Conv2D |
224x224x64 |
224x224x64 |
3x3 |
1 |
36928 |
MaxPool1 |
MaxPooling2D |
224x224x64 |
112x112x64 |
2x2 |
2 |
0 |
Conv2_1 |
Conv2D |
112x112x64 |
112x112x128 |
3x3 |
1 |
73856 |
Conv2_2 |
Conv2D |
112x112x128 |
112x112x128 |
3x3 |
1 |
147584 |
MaxPool2 |
MaxPooling2D |
112x112x128 |
56x56x128 |
2x2 |
2 |
0 |
Conv3_1 |
Conv2D |
56x56x128 |
56x56x256 |
3x3 |
1 |
295168 |
Conv3_2 |
Conv2D |
56x56x256 |
56x56x256 |
3x3 |
1 |
590080 |
Conv3_3 |
Conv2D |
56x56x256 |
56x56x256 |
3x3 |
1 |
590080 |
MaxPool3 |
MaxPooling2D |
56x56x256 |
28x28x256 |
2x2 |
2 |
0 |
Conv4_1 |
Conv2D |
28x28x256 |
28x28x512 |
3x3 |
1 |
1180160 |
Conv4_2 |
Conv2D |
28x28x512 |
28x28x512 |
3x3 |
1 |
2359808 |
Conv4_3 |
Conv2D |
28x28x512 |
28x28x512 |
3x3 |
1 |
2359808 |
MaxPool4 |
MaxPooling2D |
28x28x512 |
14x14x512 |
2x2 |
2 |
0 |
Conv5_1 |
Conv2D |
14x14x512 |
14x14x512 |
3x3 |
1 |
2359808 |
Conv5_2 |
Conv2D |
14x14x512 |
14x14x512 |
3x3 |
1 |
2359808 |
Conv5_3 |
Conv2D |
14x14x512 |
14x14x512 |
3x3 |
1 |
2359808 |
MaxPool5 |
MaxPooling2D |
14x14x512 |
7x7x512 |
2x2 |
2 |
0 |
Flatten |
Flatten |
7x7x512 |
25088 |
- |
- |
0 |
FC6 |
Dense |
25088 |
4096 |
- |
- |
102760448 |
FC7 |
Dense |
4096 |
4096 |
- |
- |
|
PyTorch 代码
import torch
import torch.nn as nn
class VGG16(nn.Module):
def __init__(self, num_classes=1000):
super(VGG16, self).__init__()
self.features = nn.Sequential(
# Conv1
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
# Conv2
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
# Conv3
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
# Conv4
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
# Conv5
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# 实例化模型
model = VGG16(num_classes=1000)
print(model)
Inception
层名称 |
类型 |
输入大小(HWC) |
输出大小(HWC) |
核尺寸 |
步长 |
参数数量 |
Conv2d_1a_3x3 |
卷积层 |
299x299x3 |
149x149x32 |
3x3 |
2 |
864 |
Conv2d_2a_3x3 |
卷积层 |
149x149x32 |
147x147x32 |
3x3 |
1 |
9216 |
Conv2d_2b_3x3 |
卷积层 |
147x147x32 |
147x147x64 |
3x3 |
1 |
18432 |
MaxPool_3a_3x3 |
最大池化层 |
147x147x64 |
73x73x64 |
3x3 |
2 |
0 |
Conv2d_3b_1x1 |
卷积层 |
73x73x64 |
73x73x80 |
1x1 |
1 |
5120 |
Conv2d_4a_3x3 |
卷积层 |
73x73x80 |
71x71x192 |
3x3 |
1 |
138240 |
MaxPool_5a_3x3 |
最大池化层 |
71x71x192 |
35x35x192 |
3x3 |
2 |
0 |
Mixed_5b |
Inception模块 |
35x35x192 |
35x35x256 |
- |
- |
- |
Mixed_5c |
Inception模块 |
35x35x256 |
35x35x288 |
- |
- |
- |
Mixed_5d |
Inception模块 |
35x35x288 |
35x35x288 |
- |
- |
- |
Mixed_6a |
Inception模块 |
35x35x288 |
17x17x768 |
- |
2 |
- |
Mixed_6b |
Inception模块 |
17x17x768 |
17x17x768 |
- |
- |
- |
Mixed_6c |
Inception模块 |
17x17x768 |
17x17x768 |
- |
- |
- |
Mixed_6d |
Inception模块 |
17x17x768 |
17x17x768 |
- |
- |
- |
Mixed_6e |
Inception模块 |
17x17x768 |
17x17x768 |
- |
- |
- |
Mixed_7a |
Inception模块 |
17x17x768 |
8x8x1280 |
- |
2 |
- |
Mixed_7b |
Inception模块 |
8x8x1280 |
8x8x2048 |
- |
- |
- |
Mixed_7c |
Inception模块 |
8x8x2048 |
8x8x2048 |
- |
- |
- |
以Mixed_5b为例,列出其内部结构。
层名称 |
类型 |
输入大小(HWC) |
输出大小(HWC) |
核尺寸 |
步长 |
参数数量 |
Mixed_5b/1x1 |
卷积层 |
35x35x192 |
35x35x64 |
1x1 |
1 |
12288 |
Mixed_5b/3x3/1x1 |
卷积层 |
35x35x192 |
35x35x64 |
1x1 |
1 |
12288 |
Mixed_5b/3x3/3x3 |
卷积层 |
35x35x64 |
35x35x96 |
3x3 |
1 |
63360 |
Mixed_5b/5x5/1x1 |
卷积层 |
35x35x192 |
35x35x16 |
1x1 |
1 |
3072 |
Mixed_5b/5x5/5x5 |
卷积层 |
35x35x16 |
35x35x16 |
5x5 |
1 |
3072 |
Mixed_5b/pool |
池化层 |
35x35x192 |
35x35x32 |
- |
1 |
0 |
Mixed_5b/output |
Concatenate |
- |
35x35x256 |
- |
- |
- |
PyTorch 源码
以下是使用PyTorch构建InceptionV3模型的一部分源码。这个源码展示了如何定义Inception模块和一些辅助函数,但不包括整个网络的所有细节。完整的InceptionV3模型定义会更长,这里只提供了核心部分。
import torch
import torch.nn as nn
import torch.nn.functional as F
class InceptionA(nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)
self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
self.branch_pool = BasicConv2d(in_channels, 32, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class InceptionV3(nn.Module):
def __init__(self, num_classes=1000):
super(InceptionV3, self).__init__()
# Stem
self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
# ... additional stem layers ...
# Inception modules
self.Mixed_5b = InceptionA(256)
self.Mixed_5c = InceptionA(288)
# ... additional Inception modules ...
# Auxiliary Logits
self.AuxLogits = None
# ... auxiliary logits layers ...
# Final Logits
self.Mixed_7c = InceptionA(768)
# ... additional final layers ...
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
# Stem
x = self.Conv2d_1a_3x3(x)
x = self.Conv2d_2a_3x3(x)
x = self.Conv2d_2b_3x3(x)
# ... additional stem layers ...
# Inception modules
x = self.Mixed_5b(x)
x = self.Mixed_5c(x)
# ... additional Inception modules ...
# Auxiliary Logits
if self.AuxLogits is not None:
aux = self.AuxLogits(x)
else:
aux = None
# Final Logits
x = self.Mixed_7c(x)
# ... additional final layers ...
x = F.adaptive_avg_pool2d(x, (1, 1))
x = torch.flatten(x, 1)
x = self.fc(x)
return x, aux
# Example usage:
# model = InceptionV3(num_classes=1000)
Resnet18
层名称 |
类型 |
输入大小(HWC) |
输出大小(HWC) |
核尺寸 |
步长 |
参数数量 |
Conv1 |
卷积层 |
224x224x3 |
112x112x64 |
7x7 |
2 |
9472 |
BatchNorm1 |
批归一化层 |
112x112x64 |
112x112x64 |
- |
- |
256 |
ReLU1 |
激活层 |
112x112x64 |
112x112x64 |
- |
- |
0 |
MaxPool1 |
最大池化层 |
112x112x64 |
56x56x64 |
3x3 |
2 |
0 |
ResidualBlock1_1 |
残差块 |
56x56x64 |
56x56x64 |
- |
- |
8448 |
ResidualBlock1_2 |
残差块 |
56x56x64 |
56x56x64 |
- |
- |
8448 |
ResidualBlock2_1 |
残差块 |
56x56x64 |
28x28x128 |
- |
2 |
43008 |
ResidualBlock2_2 |
残差块 |
28x28x128 |
28x28x128 |
- |
- |
43008 |
ResidualBlock3_1 |
残差块 |
28x28x128 |
14x14x256 |
- |
2 |
172448 |
ResidualBlock3_2 |
残差块 |
14x14x256 |
14x14x256 |
- |
- |
172448 |
AvgPool |
平均池化层 |
14x14x256 |
7x7x256 |
7x7 |
2 |
0 |
Flatten |
展平层 |
7x7x256 |
12544 |
- |
- |
0 |
FC |
全连接层 |
12544 |
1000 |
- |
- |
12545000 |
Softmax |
Softmax层 |
1000 |
1000 |
- |
- |
0 |
每个残差块的结构:
阶段 |
残差块 |
层名称 |
类型 |
输入大小(HWC) |
输出大小(HWC) |
核尺寸 |
步长 |
参数数量 |
1 |
1 |
conv1 |
卷积 |
224x224x64 |
112x112x64 |
7x7 |
2 |
9408 |
|
|
conv2 |
卷积 |
112x112x64 |
112x112x64 |
3x3 |
1 |
18432 |
|
|
skip1 |
卷积 |
224x224x64 |
112x112x64 |
1x1 |
2 |
256 |
1 |
2 |
conv1 |
卷积 |
112x112x64 |
112x112x64 |
3x3 |
1 |
18432 |
|
|
conv2 |
卷积 |
112x112x64 |
112x112x64 |
3x3 |
1 |
18432 |
2 |
1 |
conv1 |
卷积 |
112x112x64 |
56x56x128 |
3x3 |
2 |
73984 |
|
|
conv2 |
卷积 |
56x56x128 |
56x56x128 |
3x3 |
1 |
147584 |
|
|
skip1 |
卷积 |
112x112x64 |
56x56x128 |
1x1 |
2 |
832 |
2 |
2 |
conv1 |
卷积 |
56x56x128 |
56x56x128 |
3x3 |
1 |
147584 |
|
|
conv2 |
卷积 |
56x56x128 |
56x56x128 |
3x3 |
1 |
147584 |
3 |
1 |
conv1 |
卷积 |
56x56x128 |
28x28x256 |
3x3 |
2 |
295168 |
|
|
conv2 |
卷积 |
28x28x256 |
28x28x256 |
3x3 |
1 |
589824 |
|
|
skip1 |
卷积 |
56x56x128 |
28x28x256 |
1x1 |
2 |
3328 |
3 |
2 |
conv1 |
卷积 |
28x28x256 |
28x28x256 |
3x3 |
1 |
589824 |
|
|
conv2 |
卷积 |
28x28x256 |
28x28x256 |
3x3 |
1 |
589824 |
4 |
1 |
conv1 |
卷积 |
28x28x256 |
14x14x512 |
3x3 |
2 |
1180928 |
|
|
conv2 |
卷积 |
14x14x512 |
14x14x512 |
3x3 |
1 |
2359296 |
|
|
|
|
|
|
|
|
|
PyTorch 代码
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义基本残差块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
# 定义ResNet网络
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# 初始化权重
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 实例化ResNet-16模型
def resnet16(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
# 这里没有预训练权重,如果需要预训练,可以在这里加载
pass
return model
# 创建模型实例
model = resnet16()
print(model)
标签:kernel,
架构,
nn,
卷积,
self,
神经网络,
3x3,
Conv2d,
size
From: https://www.cnblogs.com/apachecn/p/18545568