首页 > 其他分享 >Single-Agent vs Multi-Agent AI Comparison

Single-Agent vs Multi-Agent AI Comparison

时间:2024-11-13 17:56:26浏览次数:1  
标签:Comparison Multi multiagent system agent agents Agent systems

Single-Agent vs Multi-Agent AI Comparison

https://integrail.ai/blog/single-agent-vs-multi-agent-ai-comparison

 

Choosing the Right System

The choice between single-agent and multi-agent systems depends on the specific requirements of your project:

  • For Simple, Well-Defined Tasks: A single-agent system is usually sufficient and more cost-effective.
  • For Complex, Dynamic Environments: A multi-agent system offers the flexibility and robustness needed to manage intricate and evolving challenges.

 

What is a multiagent system?

https://www.ibm.com/think/topics/multiagent-system

Single agent intelligent systems engage with their environment to autonomously plan, call tools and produce responses. The tools made available to an agent provide information that is otherwise unavailable to the agent. As previously described, this information can be a database acquired through an API or another agent. There is a distinction here between single and multiagent systems. When calling another agent as a tool, that secondary agent is part of the original agent’s environmental stimuli. That information is acquired and no further cooperation takes place. Whereas multiagent systems differ by involving all agents within the environment to model each other’s goals, memory and plan of action.4 Communication between agents can be direct or indirect through altering the shared environment.

Each entity within a multiagent system is an autonomous agent to some extent. This autonomy is typically seen by the agent’s planning, tool calling and general reasoning. In a multiagent system, agents remain autonomous but also cooperate and coordinate in agent structures.3 To solve complex problems, agent communication and distributed problem-solving are key. This type of agent interaction can be described as multiagent reinforcement learning. The information shared through this form of learning can include instantaneous information acquired through sensors or actions. Additionally, an agent’s experiences in the form of episodic information can be shared. These episodes can be sequences of sensations, actions and learned policies. Finally, agents can share their experiences in real-time to prevent other agents from repetitively learning the same policies.5

Individual agents are powerful on their own. They can create subtasks, use tools and learn through their interactions. The collective behavior of multiagent systems increases the potential for accuracy, adaptability and scalability. Multiagent systems tend to outperform single-agent systems due to the larger pool of shared resources, optimization and automation. Instead of multiple agents learning the same policies, one can share learned experiences to optimize time complexity and efficiency.5

 

思维融入工作流

https://mp.weixin.qq.com/s/6FANreQTlkD3SXHCxfSD3g

标签:Comparison,Multi,multiagent,system,agent,agents,Agent,systems
From: https://www.cnblogs.com/lightsong/p/18544490

相关文章

  • AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
    AIAgent智能应用从0到1定制开发:Langchain+LLM全流程解决方案与落地实战随着人工智能技术的飞速发展,AIAgent作为智能应用的新星,正逐步从理论走向实践。AIAgent通过集成大语言模型(LLM)与各种智能工具,能够自主理解、规划并执行复杂任务,为企业带来前所未有的智能化体验。本文将从零......
  • EaseAgent 无侵入式观测系统
    背景随着微服务的广泛应用,故障和问题定位变的非常困难,完善的可观测性已经变成了分布式系统的刚需,用于定位问题的分布式问题追踪系统更是可观测性的重中之重。随着需求量的变大,市场上出现了很多APM(ApplicationPerformanceManagement)产品来解决分布式系统的可观测性问题。......
  • Mit6.S081笔记Lab7: Multithreading 多线程
    课程地址:https://pdos.csail.mit.edu/6.S081/2020/schedule.htmlLab地址:https://pdos.csail.mit.edu/6.S081/2020/labs/thread.html我的代码地址:https://github.com/Amroning/MIT6.S081/tree/threadxv6手册:https://pdos.csail.mit.edu/6.S081/2020/xv6/book-riscv-rev1.pdf相......
  • 《VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Aud
    文章汉化系列目录文章目录文章汉化系列目录摘要1引言2相关工作2.1Vision中的Transformer2.2自监督学习3方法3.1标记化与位置编码3.1.1DropToken3.2Transformer架构3.3公共空间投影3.4多模态对比学习4实验4.1实验设置4.2结果4.2.1视频动作识别的微调4.2......
  • set 、multiset、unordered_set 和 map 、multimap、unordered_map
    序列式容器:比如:vector、list、deque、forward_list(C++11)等因为其底层为线性序列的数据结构,里面存储的是元素本身。关联式容器:比如(树形结构的关联式容器):map、set、multimap、multiset等也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key,value>结构的键值对,......
  • LangGraph入门:构建ReACT架构的智能Agent
    引言在人工智能和大语言模型(LLM)快速发展的今天,如何构建高效、灵活的智能Agent成为了一个热门话题。LangGraph作为一个强大的工具,为我们提供了一种新的方式来实现复杂的AI工作流,特别是在构建ReACT(ReasoningandActing)架构的智能Agent方面表现出色。本文将深入探讨如何使用LangGra......
  • LangGraph进阶:条件边与工具调用Agent实现
    在前两篇文章中,我们讨论了LCEL和AgentExecutor的局限性,以及LangGraph的基础概念。今天,我们将深入探讨LangGraph的高级特性,重点关注条件边的使用和如何实现一个完整的工具调用Agent。条件边的高级用法条件边是LangGraph中最强大的特性之一,它允许我们基于状态动态决定执行流......
  • Intro to LLM Agents with Langchain: When RAG is Not Enough
    https://towardsdatascience.com/intro-to-llm-agents-with-langchain-when-rag-is-not-enough-7d8c08145834Asalways,youcanfindthecodeonGitHub,andhereareseparateColabNotebooks:PlanningandreasoningDifferenttypesofmemoriesVarioustypesof......
  • 【论文笔记】VCoder: Versatile Vision Encoders for Multimodal Large Language Mode
    ......
  • 【大模型应用开发 动手做AI Agent】Agent的感知力:语言交互能力和多模态能力
    AIAgent,语言交互,多模态感知,大模型应用,自然语言处理,计算机视觉1.背景介绍在人工智能领域,AIAgent(智能代理)作为一种能够感知环境、做出决策并与环境交互的智能体,扮演着越来越重要的角色。一个强大的AIAgent需要具备敏锐的感知能力,才能有效地理解和响应周围世......