首页 > 其他分享 >基于YOLOV8模型的西红柿目标检测系统(PyTorch+Pyside6+YOLOv8模型)

基于YOLOV8模型的西红柿目标检测系统(PyTorch+Pyside6+YOLOv8模型)

时间:2024-11-13 11:43:40浏览次数:3  
标签:视频 训练 检测 模型 点击 Pyside6 PyTorch 按钮

摘要:基于YOLOV8模型的西红柿目标检测系统可用于日常生活中检测与定位西红柿目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件私信博主获取。

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型的西红柿目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

  1. 打开项目目录,在搜索框内输入cmd打开终端

  1. 新建一个虚拟环境(conda create -n yolo8 python=3.8)

  1. 激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i Simple Index

  1. 注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i Simple Index

  1. 安装图形化界面库pyside6:pip install pyside6 -i Simple Index

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。

点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。

数据集介绍

本系统使用的西红柿数据集手动标注了西红柿这一个类别,数据集总计895张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的西红柿检测识别数据集包含训练集716张图片,验证集179张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。

在训练时也可指定更多的参数,大部分重要的参数如下所示:

名称

默认参数

描述

model

None

模型或模型配置文件

data

None

数据集配置文件

epochs

100

训练的轮次

patience

50

准确率如果没有显著提升时停止的轮次

batch

16

训练的批次大小

imgsz

640

图像的尺寸

save

True

是否需要保存训练的结果与模型

save_period

-1

每隔多少个epoch保留训练好的权重模型

cache

False

是否使用缓存保存数据,可选True/ram、disk或者False

device

None

训练设备,可选0或1或cpu等

workers

8

多线程数据集加载

project

None

项目名称

name

None

实验名称

exist_ok

False

是否覆盖现有实验

pretrained

False

是否使用预训练模型

optimizer

'auto'

优化器选择,有[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]

verbose

False

是否打印详细输出

seed

0

种子数

deterministic

True

是否启动确定性模式

single_cls

False

单类别模式训练

rect

False

是否支持矩形训练

cos_lr

False

是否使用余弦学习率调度器

resume

False

是否从最近训练断掉的权重继续训练

amp

True

是否开启混合精度训练

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。

我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:

标签:视频,训练,检测,模型,点击,Pyside6,PyTorch,按钮
From: https://blog.csdn.net/BestSongC/article/details/143652982

相关文章

  • 零基础入门大模型教程,2024最详细的学习路线,让你少走99%弯路!
    第一阶段:基础理论入门目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。第二阶段:核心技术解析目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性......
  • 全面覆盖:AI大模型微调产品经理面试题集锦,非常详细收藏我这一篇就够了!
    前言这两天跟很多做程序员的朋友聊天,怎么看全网火爆的大模型。让我挺意外的是,大家的反馈普遍都很焦虑。在AI大模型微调领域的产品经理面试中,总会遇到一系列与技术细节、项目经验、市场趋势以及职业规划相关的问题。以下是一些建议的面试题及其回答示例:面试题1:请简述你对......
  • 高级算法LLM大语言模型算法特训 带你转型AI大语言模型算法工程师
    高级算法LLM大语言模型算法特训:转型AI大语言模型算法工程师的指南随着人工智能技术的飞速发展,大语言模型(LargeLanguageModel,LLM)作为自然语言处理(NLP)领域的重要组成部分,正逐步成为各行各业的关键技术支撑。本文将深入探讨高级算法LLM大语言模型算法特训的内容、过程及如何通过......
  • AI大模型全栈工程师培养计划,做ChatGPT浪潮中顶尖的超级个体知乎
    AI大模型全栈工程师培养计划:打造ChatGPT浪潮中的顶尖超级个体随着以ChatGPT为代表的AI大模型技术的迅猛发展,我们正迎来一场前所未有的技术革命。在这场革命中,AI大模型全栈工程师成为了推动技术革新、引领行业发展的核心力量。为了培养在ChatGPT浪潮中顶尖的超级个体,我们推出了AI......
  • AI正在重塑软件市场格局,大模型在软件开发中的应用逐渐成为主流趋势。
    一、AI大模型定义及概述  随着人工智能技术的飞速发展,AI大模型逐渐成为科技领域的热点。AI大模型是指利用深度学习等技术训练出的超大参数规模的神经网络模型,能够通过学习海量数据来提升自身的性能和准确性。在软件开发领域,AI大模型正以其强大的自主学习和推理能力,深刻改变着软......
  • NLP论文速读(斯坦福大学)|生成式奖励模型(Generative Reward Models)
    论文速读|GenerativeRewardModels论文信息:简介:   这篇论文探讨了如何提高现代大型语言模型(LLMs)的性能,特别是在强化学习从人类反馈(RLHF)过程中的效率和效果。RLHF方法虽然有效,但它需要大量的人类偏好数据来训练奖励模型,这不仅资源密集,而且技术上具有挑战性。此外,现......
  • 【金融风控】模型评分卡构建
    内容介绍掌握KS值的计算方法知道评分映射方法知道LightGBM基本原理掌握使用lightGBM进行特征筛选的方法应用toad构建评分卡模型【理解】模型构建流程实验设计新的模型能上线一定要比原有方案有提升,需要通过实验证明冷启动业务初期成长期波动期策略调整新增数......
  • SMoA: 基于稀疏混合架构的大语言模型协同优化框架
    在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(SparseMixture-of-Agents,SMoA)框架,通过借鉴稀疏专家混合(SparseMixtur......
  • PyTorch 应用实战
    PyTorch作为深度学习非常重要的框架之一,在科研和开发领域有着非常广泛的使用,是我们学习和研究LLM必备的工具之一。本文主要介绍三个PyTorch的实战案例,方便大家快速了解和体验PyTorch。一、PyTorch简介PyTorch是一个开源的Python深度学习框架,它具有灵活、高效、易于学......
  • pytorch简单识别CIFAR10彩色图片的卷积神经网络
    环境:python3.11.10pytorch2.3.0一、前期准备1.设置GPUimporttorchimporttorch.nnasnnimportmatplotlib.pyplotaspltimporttorchvisiondevice=torch.device("cuda"iftorch.cuda.is_available()else"cpu")device2.导入数据使用dataset下载CI......