Kafka 中默认的日志(这个地方是数据的意思,就是Segment)保存时间为 7 天,可以通过调整如下参数修改保存时间。
log.retention.hours,最低优先级小时,默认 7 天。
log.retention.minutes,分钟。 --如果设置了该值,小时的设置不起作用。
log.retention.ms,最高优先级毫秒。 --如果设置了该值,分钟的设置不起作用。
log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。
那么日志一旦超过了设置的时间,怎么处理呢?
Kafka 中提供的日志清理策略有 delete 和 compact 两种。
1)delete 日志删除:将过期数据删除
log.cleanup.policy = delete 所有数据启用删除策略
(1)基于时间:默认打开。以 segment 中所有记录中的最大时间戳作为该文件时间戳。
(2)基于大小:默认关闭。超过设置的所有日志总大小,删除最早的 segment。
log.retention.bytes,默认等于-1,表示无穷大。
思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?
2)compact 日志压缩(合并的意思,不是真的压缩)
compact日志压缩:对于相同key的不同value值,只保留最后一个版本。
log.cleanup.policy = compact 所有数据启用压缩策略
压缩后的offset可能是不连续的,比如上图中没有6,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,实际上会拿到offset为7的消息,并从这个位置开始消费。
这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。
比如:张三 去年18岁,今年19岁,这种场景下可以进行压缩。
标签:log,压缩,清理,默认,kafka,offset,策略,日志,retention From: https://blog.csdn.net/A12345689B/article/details/143694109