首页 > 其他分享 >千问QwQ,推理界“新王”!

千问QwQ,推理界“新王”!

时间:2024-12-01 23:25:04浏览次数:3  
标签:千问 模型 编程 能力 数学 新王 推理 QwQ

0 前言

思考、质疑、理解,人类探索未知的永恒追求。探索之路,QwQ如一位怀抱无尽好奇的学徒,以思考和疑问照亮前路。QwQ深知自己一无所知,而这种认知正是其好奇心的源泉。探寻答案过程,始终保持自省,以理性之光审视每个假设,在不同思维维度中穿行,追寻更深层真理。

但正如所有智慧的追求者,QwQ也有局限,它也只是漫长旅程的一个初步阶段——仍在学习如何行走于理性之路。思绪偶尔飘散,答案或许未尽完善,智慧仍在积淀。但这就是学习的美妙:既有能力又保持谦逊,既有知识又永远充满疑问。

1 模型局限性

QwQ-32B-Preview 是由 Qwen 团队开发的实验性研究模型,专注增强 AI 推理能力。作为预览版,它展现令人期待的分析能力,同时也存在局限:

  1. 语言切换问题:模型可能在回答中混合使用不同语言,影响表达的连贯性。
  2. 推理循环:在处理复杂逻辑问题时,模型偶尔会陷入递归推理模式,在相似思路中循环。这种行为虽然反映了模型试图全面分析的努力,但可能导致冗长而不够聚焦的回答。
  3. 安全性考虑:尽管模型已具备基础安全管控,但仍需要进一步增强。它可能产生不恰当或存在偏见的回答,且与其他大型语言模型一样,可能受到对抗攻击的影响。我们强烈建议用户在生产环境中谨慎使用,并采取适当的安全防护措施。
  4. 能力差异:QwQ-32B-Preview 在数学和编程领域表现出色,但在其他领域仍有提升空间。模型性能会随任务的复杂度和专业程度而波动。我们正通过持续优化,努力提升模型的综合能力。

2 模型表现

通过深入探索和无数试验发现:当模型有足够的时间思考、质疑和反思时,它对数学和编程的理解就会深化。就像学生通过认真地检查自己的工作并从错误中学习变得更加聪明一样,我们的模型也通过耐心和深思熟虑的分析获得了更深入的见解。这种细致的反思和自我质疑的过程使得模型能够取得解决复杂问题的突破性进展。我们的探索之旅揭示了模型在数学和编程领域解决一些最具挑战性的问题的卓越能力,包括:

  • GPQA:一个通过研究生级别问题评估高阶科学解题能力的评测集,旨在考察科学问题解决能力。
  • AIME:涵盖算术、代数、计数、几何、数论、概率等中学数学主题的综合评测,测试数学问题解决能力。
  • MATH-500:包含500个测试样本的MATH评测集,全面考察数学解题能力。
  • LiveCodeBench:评估真实编程场景中代码生成和问题解决能力的高难度评测集。

具体表现

  1. GPQA:65.2%,展示了研究生水平的科学推理能力;
  2. AIME:50.0%,证明了强大的数学问题解决技能;
  3. MATH-500:90.6%,体现了在各类数学主题上的全面理解;
  4. LiveCodeBench:50.0%,验证了在实际编程场景中的出色表现。

这些成果充分体现了QwQ在分析和问题解决能力方面的显著进步,尤其是在需要深度推理的技术领域。

3 案例

官方两个用例:https://qwenlm.github.io/zh/blog/qwq-32b-preview/

4 探索之路的反思

LLM的推理过程是一个复杂多面课题,研究团队在多个领域进行了深入的探索。从 Process Reward Model 到 LLM Critique,从多步推理到强化学习,我们一步步地推进着对智能的理解。虽然我们尚未明确最终的目标,但每一步的努力都使我们更接近真理、更接近智能。我们坚信,通过不懈的努力和探索,奇迹终将发生。

本文已收录在Github关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化
  • 活动&券等营销中台建设
  • 交易平台及数据中台等架构和开发设计
  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化
  • LLM Agent应用开发
  • 区块链应用开发
  • 大数据开发挖掘经验
  • 推荐系统项目

目前主攻市级软件项目设计、构建服务全社会的应用系统。

参考:

本文由博客一文多发平台 OpenWrite 发布!

标签:千问,模型,编程,能力,数学,新王,推理,QwQ
From: https://www.cnblogs.com/JavaEdge/p/18580526

相关文章

  • 千问 Qwen2.5-7B-Instruct 模型微调后“变身”Claude:是前世记忆还是数据版权?
    在微调阿里巴巴的开源大模型Qwen2.5-7B-Instruct时,我意外发现了一个令人震惊的现象:原本明确标识自己为“千问”的模型,在经过短时间微调后,居然声称自己是Anthropic的模型Claude。一个阿里推出的模型在微调后却自称为Anthropic的产品,确实让人感到意外和疑惑。千问与Claude......
  • 外网玩疯了,NSFW、毫无底线,FLUX 成为图片生成新王者
    马斯克的Grok-2发布,加入了FLUX模型提供的文生图能力。一夜之间,FLUX毫无底线的图片血洗X(推特)。自从Google把美国开国总统和印第安人都画成黑人之后,马斯克带头掀起另一个极端的文生图刷屏现象。FLUX模型,来自于德国创业公司BlackForestLabs,拳打MJ脚踩SD,图片质......
  • Chainlit集成Langchain并使用通义千问实现和数据库交互的网页对话应用增强扩展(text2sq
    前言我在上一篇文章中《Chainlit集成Langchain并使用通义千问实现和数据库交互的网页对话应用(text2sql)》利用langchain中create_sql_agent创建一个数据库代理智能体,但是实测中发现,使用create_sql_agent在对话中,响应速度太慢了,数据的表越多,对话响应就越慢,这次本篇文章l......
  • Chainlit集成Langchain并使用通义千问和智谱AI实现AI知识库检索网页对话应用
    LangChain简介LangChain是一个开源框架,设计用于开发和部署与语言模型(如大型语言模型LLM)交互的应用程序。它提供了一种简便的方法来构建基于自然语言处理(NLP)的系统,这些系统可以执行各种任务,例如问答、文本生成、文档检索等。LangChain的主要目标是简化开发过程,使开发者能......
  • 实战千问2大模型第三天——Qwen2-VL-7B(多模态)视频检测和批处理代码测试
    画面描述:这个视频中,一位穿着蓝色西装的女性站在室内,背景中可以看到一些装饰品和植物。她双手交叉放在身前,面带微笑,似乎在进行一场演讲或主持活动。她的服装整洁,显得非常专业和自信。一、简介阿里通义千问开源新一代视觉语言模型Qwen2-VL。其中,Qwen2-VL-72B在大部分指标上都......
  • 实战千问2大模型第二天——Qwen2-VL-7B(多模态)的部署和测试
    图片描述:这张图片展示了一辆蓝色的电动公交车停在街道上。公交车上有一个标志,写着“ceroemisiones”,意思是“零排放”。公交车的侧面还有一句标语,写着“Unminibús100%eléctricosiesplan”,意思是“如果计划的话,这是一辆100%电动的迷你巴士”。公交车的前方有一个标志,写......
  • AI界的新王者:HyperWrite的Reflection 70B模型横空出世
    在人工智能的世界里,每一天都可能发生惊天动地的变化。就在昨天,我们还在为某个模型的强大性能惊叹不已,今天,一个新的"王者"就已经闪亮登场了。各位看官,请允许我隆重介绍:来自HyperWrite公司的Reflection70B模型!......
  • 通义千问项目制作
    这一次我们来做一个集成了通义千问的程序,里面还有计算器、翻译等,通义千问支持播报,输入支持图像和文字。1.申请和开通1.1.文字识别开通首先,打开文字识别_OCR文字识别_图片识别文字_数据智能-阿里云(aliyun.com)页面并登陆阿里云账号,点击,文字识别服务。接下来在RAM访问控制(aliyu......
  • 怎么在Windows操作系统部署阿里开源版通义千问(Qwen2)
    怎么在Windows操作系统部署阿里开源版通义千问(Qwen2) | 原创作者/编辑:凯哥Java              | 分类:人工智能学习系列教程GitHub上qwen2截图随着人工智能技术的不断进步,阿里巴巴通义千问团队近期发布了Qwen2系列开源模型,这一系列模型在多个领......
  • 怎么在Windows操作系统部署阿里开源版通义千问(Qwen2)
    怎么在Windows操作系统部署阿里开源版通义千问(Qwen2) | 原创作者/编辑:凯哥Java              | 分类:人工智能学习系列教程GitHub上qwen2截图随着人工智能技术的不断进步,阿里巴巴通义千问团队近期发布了Qwen2系列开源模型,这一系列模型在多个领域展......