首页 > 其他分享 >Matrix Operations

Matrix Operations

时间:2024-12-01 18:11:02浏览次数:6  
标签:Operations your Matrix should marks method matrix

  1. You will use object-oriented techniques, file processing, data types and structures you have learned throughout the semester to solve problems.
  2. Submission requirements:
  3. You should only submit one zip-folder with your Java project code. Only English solutionsand comments are accepted. Answers need to be zipped as a java project.
  4. Please name your Java project code in ONE zip folder as ‘Coursework3
  5. You also need to submit a report in PDF format that explains the task, how you understood the question, and why you believe your solution is the best approach.

Matrix Operations

This year, you are required to complete a class that implements matrix operations. The tasks involve creating a Matrix class with various methods to handle operations such as addition, subtraction, multiplication, transposition, and determinant calculation. Please download the provided code template from the Learning Mall before starting the assignment. The template will give you a structured starting point for your implementation. Once you have completed writing your code, paste the code for each method into the respective submission boxes on the Learning Mall. The following is a detailed description of the task.

Important Note: Pay close attention to edge cases and ensure that your methods handle invalid inputs gracefully. Failure to do so will result in significant point deductions.

Task 1: Matrix Class Implementation (10 marks)

Implement the constructor for the class Matrix that will handle basic matrix operations.

  • A constructor public Matrix(double[][] data)to initialize the matrix. If the input data is null or not a proper 2D array (rows with different lengths), throw an IllegalArgumentException.

Task 2: Accessor Method (10 marks)

Implement a method to retrieve the matrix data:

  • public double[][] getData(): This method should return a deep copy of the data field to prevent external modification.

Task 3: Matrix Addition (15 marks)

Implement a method to add two matrices:

  • public Matrix add(Matrix other): This method should add the corresponding elements of the matrices and return a new Matrix object with the result. If the matrices are not of the same size, throw an IllegalArgumentException.

Task 4: Matrix Subtraction (15 marks)

Implement a method to subtract another matrix from the current matrix:

  • public Matrix subtract(Matrix other):This method 代写Matrix Operations  should subtract the corresponding elements of the other matrix from the current matrix and return a new Matrix object with the result. If the matrices are not of the same size, throw an IllegalArgumentException.

Task 5: Matrix Multiplication (20 marks)

Implement a method to multiply the current matrix with another matrix:

  • public Matrix multiply(Matrix other):This method should perform matrix multiplication and return a new Matrix object with the result. If the number of columns in the current matrix does not match the number of rows in the other matrix, throw an IllegalArgumentException.

Task 6: Matrix Transposition (10 marks)

Implement a method to transpose the current matrix:

  • public Matrix transpose():This method should return a new Matrix object with the transposed matrix.

Task 7: Matrix Determinant (20 marks)

Implement a method to calculate the determinant of the matrix:

  • public double determinant():This method should return the determinant of the matrix. For non-square matrices, throw an IllegalArgumentException. Implement determinant calculation for 2x2 and 3x3 matrices. For matrices larger than 3x3, return NaN.

Example Usage and Output

This section does not need to be submitted.

public static void main(String[] args) {

    double[][] data1 = {{1, 2}, {3, 4}};

    double[][] data2 = {{5, 6}, {7, 8}};

    

    Matrix matrix1 = new Matrix(data1);

    Matrix matrix2 = new Matrix(data2);

    

    Matrix sum = matrix1.add(matrix2);

    Matrix difference = matrix1.subtract(matrix2);

    Matrix product = matrix1.multiply(matrix2);

    Matrix transpose = matrix1.transpose();

    double determinant = matrix1.determinant();

    

    // Print results

    System.out.println("Sum:");

    printMatrix(sum.getData());

    System.out.println("Difference:");

    printMatrix(difference.getData());

    System.out.println("Product:");

    printMatrix(product.getData());

    System.out.println("Transpose:");

    printMatrix(transpose.getData());

    System.out.println("Determinant:");

    System.out.println(determinant);

}

 

private static void printMatrix(double[][] matrix) {

    for (double[] row : matrix) {

        for (double val : row) {

            System.out.print(val + " ");

        }

        System.out.println();

    }

}

 

The output should be:

Sum:

6.0 8.0

10.0 12.0

Difference:

-4.0 -4.0

-4.0 -4.0

Product:

19.0 22.0

43.0 50.0

Transpose:

1.0 3.0

2.0 4.0

Determinant:

-2.0

Report

In this report, you should document your understanding of the task and provide a justification for your solution. You should also explain why you believe your code structure is well-designed and clear. Additionally, you need to test edge cases and provide a technically sound report on how your code handles these cases..The marking is distrubuted as follows:

  • Understanding of the Task: 30 marks
  • Justification of Solution: 30 marks
  • Clarity and Structure: 20 marks
  • Handling of Edge Cases: 10 marks
  • Technical Accuracy: 10 marks

标签:Operations,your,Matrix,should,marks,method,matrix
From: https://www.cnblogs.com/CSE231/p/18577981

相关文章

  • 乘法和逆矩阵 matrix multiplication and inverses
    乘法和逆矩阵matrixmultiplicationandinverses​ 首先说一下矩阵乘法。在之前的篇章里已经说明过一些矩阵的乘法的理解,在这一篇对整个矩阵乘法做一个概括,并提出新的理解。​ 我们考虑矩阵乘法[1]:\[\mathbfA\mathbfB=\mathbfC\]这里\(\mathbfA\)为\(m\)行\(n\)列的......
  • [ARC126E] Infinite Operations
    不妨把\(a\)排序。考虑一个特殊情况:\(a_1=a_2=\cdots=a_{n-1}=0\),\(a_n=x\)。不妨设此时答案为\(F(n,x)\)。可以递归把\(a_2,a_3,\cdots,a_{n}\)全部变为\(\dfrac{x}{n-1}\),然后全部取相反数后就是相同问题。可以归纳证明\(F(n,x)\)的下界是\(\dfrac{(n-1)x}{2}\)。对......
  • vulnhub-Machine_Matrix靶机的测试报告
    目录一、测试环境1、系统环境2、使用工具/软件二、测试目的三、操作过程1、信息搜集2、Getshell3、提权四、结论一、测试环境1、系统环境渗透机:kali2021.1(192.168.202.134)靶 机:Linuxporteus4.16.3-porteus2、使用工具/软件Kali:arp-scan(主机探测)、nma......
  • Matrix Distances(ICPC2023 合肥站)
    #include<bits/stdc++.h>#defineendl'\n'#defineintllusingll=longlong;typedefunsignedlonglongull;usingnamespacestd;voidGordenGhost();signedmain(){#ifdefGordenfreopen("in.txt","rt",stdi......
  • 题解 CF407D【Largest Submatrix 3】/ SS240928C【c】
    题目描述给定一个\(n\timesm\)的正整数矩阵,求其中最大的满足其中不存在两个位置数值相等的子矩阵大小。\(1\leqn,m\leq400\)。本题有多种做法,而你需要寻找常数最小的做法才能通过本题。solution链表+双指针枚举上边界,逐渐下移下边界,枚举左边界,尝试双指针获得右边界......
  • CF632F Magic Matrix
    description这个有点太形式化了,还是不放了。solution首先让我们注意到\(a_{i,j}\le\max(a_{i,k},a_{j,k})\)等价于\(a_{i,j}\le\max(a_{i,k},a_{k,j})\),然后转化为这个形式后就会发现可以将其理解成一张图,不存在一条从\(i\toj\)的路径满足这条边上所有......
  • 《黑神话:悟空》玩家常见的AkMatrixReverb.dll丢失的解决方法
    AkMatrixReverb.dll是一个与音效处理相关的动态链接库文件,通常用于游戏中的音频回声和混响效果。在《黑神话:悟空》这款游戏中,这个DLL文件是用于处理游戏内的各种音效,使玩家能够体验到更加真实和沉浸的音效体验。如果您在启动或者运行游戏时遇到了“缺少AkMatrixReverb.dll”的......
  • MAST20018 – Discrete Mathematics and Operations Research
    MAST20018 – Discrete Mathematics and Operations ResearchAssignment 3Upload to Gradescope by 5pm Wed 18th September 2024Question 1In assignment 1, you considered the following project with 8 activities, labelled A to H:......
  • [LeetCode] 885. Spiral Matrix III
    Youstartatthecell(rStart,cStart)ofanrowsxcolsgridfacingeast.Thenorthwestcornerisatthefirstrowandcolumninthegrid,andthesoutheastcornerisatthelastrowandcolumn.Youwillwalkinaclockwisespiralshapetovisiteverypo......
  • [1059] Operations of None in pandas
    Inpandas,handlingNonevalues(whicharerepresentedasNaNinDataFrames)isacommontask.Herearesomewaystodealwiththem:FilteringRowsFilterRowswithNoneValues:importpandasaspd#SampleDataFramedf=pd.DataFrame({'A......