首页 > 其他分享 >MECH E4320 Batch_Reactor_Ignition

MECH E4320 Batch_Reactor_Ignition

时间:2024-11-08 18:19:24浏览次数:3  
标签:plot scale E4320 pressure MECH Ignition time axis ignition

MECH E4320 (Fall 2024): Homework #4

Please turn in your homework before the date and time indicated in Courseworks. Please show andexplain your work clearly and completely in order to earn full credit.Please include all parts of the homework you want to be graded in a single (1) pdf file submitted viacourseworks. This pdf must contain all relevant work, equations, intermediate steps, intermediate andfinal results, plots, tables, and explanations – andonly this pdf will be graded. Any additional files youuse to generate the results presented and explained in the pdf (e.g. ipyn or xlsx) must also be uploadedas well (as supplemental information for your pdf file) but will not be explicitly graded.

  1. Ignition delay time is the time it takes for a homogenous mixture at some given initialtemperature and pressure to ignite. This ignition delay time can be defined in a variety of ways,but it is often defined as the time at which the time derivative of temperature, pressure, or aspecific species reaches a maximum. For this homework, use the maximum time derivative inthe mass fraction of OH as the marker for the time of ignition.In the following problems, you will calculate (using Cantera) and plot the ignition delaytimesfor various mixtures in a homogenous, closed, adiabatic vessel (also known as a constantvolume, adiabatic “batch” reactor). You may find the“batch_reactor_ignition_delay_NTC.ipynb” Jupyter notebook under the “reactors” folder on theCantera Jupyter notebook site (https://github.com/Cantera/cantera-jupyter) helpful. For thesecalculations, use the kinetic mechanism from Hashemi et al. when defining the gas. To do this,download ‘H2mech.yaml’ from the files tab in courseworks and add it to your current workingdirectory.For a mixture of 3.47% H2, 3.47% 2, and 93.6% Argon, please plot the ignition delaytime (on the x-axis in log scale) at temperatures of 900, 1000, 1050, 1100, 1200, 1300,and 1400 K (as different lines on the same plot) as a function of pressure (from 0.1 to100 atm, on the y-axis in log scale). You can compare your calculations and plot to thisfigure belowFrom: H. Hashemi, J.M. Christensen, S. Gersen, P. Glarborg, Proceedings of theCombustion Institute 35 (2015), 553-560, https://doi.org/10.1016/j.proci.2014.05.101b. Explain the reasons for the trends you find for ignitiondelaytime as a function oftemperature and pressure within the context of the H2

 

  1. In order to obtain a better understanding of the distinct effects of pressure and concentration onignition delay times, plot the ignition delay times (on the y-axis in log scale) for three differentcases (different lines on the same plot) that yield at a mixture 3.47% H, 3.47% O2, and 93.6%Argon at 1100K and 1 atm but with different variables held constant or varied in case. Plot theignition delay time for mixtures with an initial temperature of 1100 K:as a function of P/P0(from 代写 MECH E4320 Batch_Reactor_Ignition1 to 13 where P0= 1 atm, on the x-axis in log scale) for amixture where the mole fractions are held constant while varying pressure (label thisline as ‘X fixed’).as a function of P/P0 (from 1 to 13 where P0= 1 atm, on the x-axis in log scale) for amixture where the reactant concentrations are held constant (at their 1 atm values) whilevarying the pressure (label this line as ‘[X] fixed’)as a function of XH2/XH2,0(from 1 to 13 where XH2,0= 3.47 %, on the x-axis in log scale)for a mixture where pressure is held constant at 1 atm and XH2/XO2is held fixed at 1when varying XH2(label this line as ‘P fixed’).Explain the reasons for the distinct trends in each caseNote: For this plot the y axis should still be the log scale of the ignition delay time but the x-axisis P/P0or X/X0depending on which line is being plotted.

标签:plot,scale,E4320,pressure,MECH,Ignition,time,axis,ignition
From: https://www.cnblogs.com/comp9321/p/18535279

相关文章

  • (六)OpenPCDet当中Pointpillars之添加全局注意力机制 (Global Attention Mechanism)-深度
    1.什么是全局注意力机制?      全局注意力机制是一种在深度学习中广泛应用的技术,尤其在激光雷达目标检测中具有重要作用。它通过计算输入数据中各元素之间的相关性,动态地确定在进行目标检测时需要关注哪些部分。全局注意力机制的关键在于通过注意力得分对不同输入部分进......
  • Molecular & Cellular Biomechanics
    @目录一、征稿简介二、重要信息三、服务简述四、投稿须知一、征稿简介二、重要信息期刊官网:https://ais.cn/u/3eEJNv三、服务简述主要涉及生物力学领域,包括生物分子、细胞、组织和器官的力学研究。四、投稿须知1.在线投稿:由艾思科蓝支持在线投稿,请将文章全文投稿至艾思......
  • Attention mechanism目前有什么缺点和改进空间
    Attentionmechanism是自然语言处理和计算机视觉领域的一项重要技术,但存在一些缺点和改进空间。主要缺点包括:1.计算复杂性高;2.缺乏解释性;3.可能产生不必要的注意力分配;其中,计算复杂性高可能限制了在大规模数据上的应用。改进方向包括:1.优化算法效率;2.增强模型解释性;3.精确控制注......
  • Ignition连接西门子PLC地址对应关系
    我们以西门子S7-1200系列为例:第一步:建立驱动连接,在网关内驱动选择西门子S7-1200在Name填入连接名称。这里很重要设计器建立Tag时需要填写地址,在HostName填写IP地址第二部:打开设计器新建OPC的标准Tag []里面是我们驱动里面的连接名称,后面是PLC的地址,这里注意和其他SCAD......
  • 第六届国际科技创新学术交流大会暨机械工程与自动化国际学术会议(MEA 2024) 2024 6th I
    @目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus大会时间:2024年12月6-8日大会地点:中国•广州三、大会介绍“机械工程与自动化国际学术会议(M......
  • 如何评估Mechanize和Poltergeist爬虫的效率和可靠性?
    Mechanize和Poltergeist是Ruby语言中两个流行的爬虫库,它们各自有着独特的优势和应用场景。Mechanize轻量级且易于使用,而Poltergeist则能够处理JavaScript,使得爬取动态内容成为可能。然而,如何评估这些爬虫的效率和可靠性,成为了开发者们必须面对的问题。本文将探讨评估Mechan......
  • ITMF7.120 Mechatronics in IT
    Assessment-2ITMF7.120MechatronicsinITWeighting:10%offinalgradeMarks:10MarksLearningOutcome:DesignanddevelopamodelofabasicmechatronicssystemIssue:Week2DueDate:29September2024ChinaTime8:00PMTheSchoolofComputinghasapo......
  • (一)Ignition安装
    1.下载网址:inductiveautomation.com2.模块选择Custom3.驱动选择,选择需要的驱动安装,我们这里选择和西门子和其他驱动如图:4.完成安装后会自动打开浏览器完成以下配置后启动网关创建用户:admin123456端口配置保持不变5.创建第一个项目网关启动后进入网关管理页面点击co......
  • RME40002 Mechatronics Systems Design – Portfolio Tasks Description
    RME40002MechatronicsSystemsDesign–PortfolioTasksDescriptionSchoolofScience,ComputingandEngineeringTechnologiesRME40002MechatronicsSystemsDesignPortfolioTasksDescriptionSemester2,2024Page1of21RME40002MechatronicsSystemsDesig......
  • 【mechine learning-十-梯度下降-学习率】
    学习率学习率不同的学习率在梯度下降算法中,学习率的选择很重要,不恰当的选择,甚至可能导致损失发散,而非收敛,下面就看一下学习率的影响。学习率学习率是下图中的红框圈出来的部分,学习率是模型的超参数,输入模型用来更新权重,那么它的大小意味着什么呢?不同的学习率......