关注我,持续分享逻辑思维&管理思维&面试题; 可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;
推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富。
-------------------------------------正文----------------------------------------
关于LIME和SHAP的具体代码示例或实现教程,以下是一些详细的指南:
LIME (Local Interpretable Model-agnostic Explanations)
1.分类模型:
import lime
import lime.lime_tabular
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
# Load the dataset and train a classifier
data = datasets.load_iris()
classifier = RandomForestClassifier()
classifier.fit(data.data, data.target)
# Create a LIME explainer object
explainer = lime.lime_tabular.LimeTabularExplainer(data.data, mode="classification", training_labels=data.target, feature_names=data.feature_names, class_names=data.target_names, discretize_continuous=True)
# Select an instance to be explained (you can choose any index)
instance = data.data[0]
# Generate an explanation for the instance
explanation = explainer.explain_instance(instance, classifier.predict_proba, num_features=5)
# Display the explanation
explanation.show_in_notebook()
2.回归模型:
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from lime.lime_tabular import LimeTabularExplainer
# Generate a custom regression dataset
np.random.seed(42)
X = np.random.rand(100, 5) # 100 samples, 5 features
y = 2 * X[:, 0] + 3 * X[:, 1] + 1 * X[:, 2] + np.random.randn(100) # Linear regression with noise
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a simple linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Initialize a LimeTabularExplainer
explainer = LimeTabularExplainer(training_data=X_train, mode="regression")
# Select a sample instance for explanation
sample_instance = X_test[0]
# Explain the prediction for the sample instance
explanation = explainer.explain_instance(sample_instance, model.predict)
# Print the explanation
explanation.show_in_notebook()
SHAP (SHapley Additive exPlanations)
1. XGBoost模型:
import xgboost as xgb
import shap
# train an XGBoost model
X, y = shap.datasets.california()
model = xgb.XGBRegressor().fit(X, y)
# explain the model's predictions using SHAP
explainer = shap.Explainer(model)
shap_values = explainer(X)
# visualize the first prediction's explanations
shap.plots.waterfall(shap_values[0])
2. LightGBM模型:
import lightgbm as lgb
import shap
# train a LightGBM model
X, y = shap.datasets.adult()
model = lgb.LGBMClassifier().fit(X, y)
# explain the model's predictions using SHAP
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
# visualize the first prediction's explanations
shap.plots.waterfall(shap_values[0])
这些代码示例提供了如何在不同机器学习模型上使用LIME和SHAP来解释模型预测的基本指南。你可以根据你的具体模型和数据集进行调整。
感兴趣的同学辛苦 关注/点赞 ,持续分享逻辑、算法、管理、技术、人工智能相关的文章。
有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自我介绍》, 《做好面试准备,迎接2024金三银四》。
或关注博主免费专栏【程序员宝典--常用代码分享】里面有大量面试涉及的算法或数据结构编程题。
博主其它经典原创:《管理心得--如何高效进行跨部门合作》,《技术心得--如何成为优秀的架构师》、《管理心得--如何成为优秀的架构师》、《管理心理--程序员如何选择职业赛道》,及
《C#实例:SQL如何添加数据》,《C#实战分享--爬虫的基础原理及实现》欢迎大家阅读。