首页 > 其他分享 >基于Zynq FPGA对雷龙SD NAND的测试

基于Zynq FPGA对雷龙SD NAND的测试

时间:2024-11-08 09:44:39浏览次数:3  
标签:FPGA 读写 NAND 测试 TimerA0 include uint32 雷龙 SD

一、SD NAND 特征

1.1 SD 卡简介

雷龙的 SD NAND 有很多型号,在测试中使用的是 CSNP4GCR01-AMW 与 CSNP32GCR01-AOW。芯片是基于 NAND FLASH 和 SD 控制器实现的 SD 卡。具有强大的坏块管理和纠错功能,并且在意外掉电的情况下同样能保证数据的安全。

其特点如下:

  • 接口支持 SD2.0 2 线或 4 线;

  • 电压支持:2.7V-3.6V;

  • 默认模式: 可变时钟速率 0 - 25MHz,高达 12.5 MB/s 的接口速度 (使用 4 条并行数据线)

  • 高速模式: 可变时钟速率 0 - 50MHz,高达 25 MB/s 的接口速度 (使用 4 条并行数据线)

  • 工作温度:-40°C ~ +85°C

  • 存储温度:-55°C ~ +125°C

  • 待机电流小于 250uA

  • 修正内存字段错误;

  • 内容保护机制——符合 SDMI 最高安全标准

  • SDNAND 密码保护 (CMD42 - LOCK_UNLOCK)

  • 采用机械开关的写保护功能

  • 内置写保护功能 (永久和临时)

  • 应用程序特定命令

  • 舒适擦除机制

该 SD 卡支持 SDIO 读写和 SPI 读写,最高读写速度可达 25MB/s,实际读写速度要结合 MCU 和接口情况实测获得。通常在简单嵌入式系统并对读写速度要求不高的情况下,会使用 SPI 协议进行读写。但不管使用 SDIO 还是 SPI 都需要符合相关的协议规范,才能建立相应的文件系统;

1.2 SD 卡 Block 图

该 SD 卡封装为 LGA-8;引脚分配与定义如下;在这里插入图片描述:

image-20241106234505040

二、SD 卡样片

与样片同时寄来的还有转接板,转接板将 LGA-8 封装的芯片转接至 SD 卡封装,这样只需将转接板插入 SD 卡卡槽即可使用。

在这里插入图片描述:

image-20241106234515418

三、Zynq 测试平台搭建

  • 测试平台为 Xilinx 的 Zynq 7020 FPGA 芯片;

  • 板卡:Digilent Zybo Z7

  • Vivado 版本:2018.3

  • 文件系统:FATFS

  • SD 卡接口:SD2.0

3.1 测试流程

本次测试主要针对 4G 和 32G 两个不同容量的 SD 卡,在 Zynq FPGA 上搭建 SD 卡读写回路,从而对 SD 卡读写速度进行测试,并检验读写一致性;

测试流程:

进入测试程序前,首先会对 SD 卡初始化并初始化建立 FATFS 文件系统,随后进入测试 SD 卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复 100 次并打印报告。

image-20241106234559529

3.2 SOC 搭建

硬件搭建框图如下,我们在本次系统中使用 PS 端的 SDIO 接口来驱动 SD NAND 芯片,并通过 UART 向 PC 打印报告;

PL 端的硬件搭建也很简单,只需一个 Timer 定时器来做时间测量;

image-20241106234609128

我们直接使用 Zybo 板卡文件创建一个工程,工程会将 Zybo 具有的硬件资源配置好;

image-20241106234649694

首先点击 setting->IP->Repository->+;添加 Timer IP 核的路径,Timer IP 核会在工程中给出;

image-20241106234708383

点击 Create Block Design 创建 BD 工程

image-20241106234719321

在创建的过程中添加 Zynq 内核;

image-20241106234728015

由于我们使用了板卡文件,所以内核 IP 是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置 DDR 等配置;

双击内核 IP,点击 Clock Configuration->PL Fabric Clocks,将 FCLK_CLK0 的时钟频率修改为 100Mhz

image-20241106234745270

添加 TimerA IP;

image-20241106235212326

依次点击上方的自动设计,完成 SOC 搭建;

image-20241106235221986

点击 BD 设计,并创建顶层文件

image-20241106235231159

生成比特流文件;

image-20241106235241703

在生成比特流文件后,将其导入 SDK;

点击 Export->Export Hardware,导出硬件;然后点击 Launch SDK 打开 SDK 进行软件设计;

image-20241106235309720

image-20241106235320866

四、软件搭建

在 SDK 中新建一个空白工程;

点击 file -> new -> Application project;

image-20241106235332805

在新建的过程中创建一个 main.c 文件,并在里面编写测试程序如下:

在每次读写开始前,通过 TimerA0_start() 函数开始计时,在读写结束后可以通过 TimerA0_stop() 结束计时,从而测得消耗时间。

相应的 Timer 驱动函数在 user/TimerA_user.c 中定义;

#include "xparameters.h" /_ SDK generated parameters _/
#include "xsdps.h" /_ SD device driver _/
#include "xil_printf.h"
#include "ff.h"
#include "xil_cache.h"
#include "xplatform_info.h"
#include "time.h"
#include "../user/headfile.h"
#define PACK_LEN 32764
static FIL fil; /_ File object _/
static FATFS fatfs;
static char FileName[32] = "Test.txt";
static char \*SD_File;
char DestinationAddress[PACK_LEN] ;
char txt[1024];
char test_buffer[PACK_LEN];
void TimerA0_init()
{
    TimerA_reset(TimerA0);//reset timerA device
    TimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1Mhz
    TimerA_Stop_Counter(TimerA0);//stop timerA
}
void TimerA0_start()
{
    TimerA_SetAs_CONTINUS_Mode(TimerA0);
}
void TimerA0_stop()
{
    TimerA_Stop_Counter(TimerA0);
}
uint32 SDCard_test()
{
    uint8 Res;
    uint32 NumBytesRead;
    uint32 NumBytesWritten;
    uint32 BuffCnt;
    uint8 work[FF_MAX_SS];
    uint32 take_time=0;
    uint32 speed = 0;
    uint32 test_time = 0;
    uint32 w_t=0;
    uint32 r_t=0;
    float wsum = 0;
    float rsum = 0;
    TCHAR *Path = "0:/";
    for(int i=0;i<PACK_LEN;i++)
    {
        test_buffer[i] = 'a';
    }
    Res = f_mount(&fatfs, Path, 0);
    if (Res != FR_OK) {
        return XST_FAILURE;
    }
    Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);
    if (Res != FR_OK) {
        return XST_FAILURE;
    }
    SD_File = (char *)FileName;
    Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);
    if (Res) {
        return XST_FAILURE;
    }
    Res = f_lseek(&fil, 0);
    if (Res) {
        return XST_FAILURE;
    }
    while(1)
    {
        TimerA_reset(TimerA0);
        TimerA0_start();
        Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,
                &NumBytesWritten);
        TimerA0_stop();
        take_time = TimerA_Read_Counter_Register(TimerA0);
        w_t+=take_time;
        xil_printf("--------------------------------\n");
        xil_printf("take time:%d us\n",take_time);
        speed = PACK_LEN*(1000000/((float)(take_time)));
        sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);
        wsum = wsum+speed;
        xil_printf(txt);
        xil_printf("--------------------------------\n");
        if (Res) {
            return XST_FAILURE;
        }
        Res = f_lseek(&fil, 0);
        if (Res) {
            return XST_FAILURE;
        }
        TimerA_reset(TimerA0);
        TimerA0_start();
        Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,
                &NumBytesRead);
        TimerA0_stop();
        take_time = TimerA_Read_Counter_Register(TimerA0);
        r_t+=take_time;
        xil_printf("--------------------------------\n");
        xil_printf("take time:%d us\n",take_time);
        speed = PACK_LEN*(1000000/((float)(take_time)));
        sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);
        rsum = rsum+speed;
        xil_printf(txt);
        xil_printf("--------------------------------\n");
        if (Res) {
            return XST_FAILURE;
        }
        for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){
            if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){
                xil_printf("%dno",BuffCnt);
                return XST_FAILURE;
            }
        }
        xil_printf("test num:%d data check right!\n",test_time+1);
        test_time++;
        if(test_time==100)
        {
            sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);
            xil_printf(txt);
            sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);
            xil_printf(txt);
            Res = f_close(&fil);
            if (Res) {
                return XST_FAILURE;
            }
            return 0;
        }
    }
}
int main(void)
{
    TimerA0_init();
    SDCard_test();
    xil_printf("finish");
    return 0;
}

五、测试结果

经测试,两种型号的芯片读写速度如下图表所示。

其 SD NAND 的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合 SD 卡的特性;

对比两种型号 SD NAND 芯片,发现 CSNP32GCR01-AOW 型号具有更高的读写速度;

六、总结

本来打算拿这些样片去试试信息安全领域是否有所应用,但发现其似乎内置了复位或初始化,导致无法提取上电时的不确定值,故无法提取该 SD NAND 的物理不可克隆特性,所以这方面的测试无法进行;

对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且 LGA-8 封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。

官网体验

最后贴上测试工程的链接,还迎复现实验: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_test

标签:FPGA,读写,NAND,测试,TimerA0,include,uint32,雷龙,SD
From: https://blog.csdn.net/weixin_44976692/article/details/143589240

相关文章

  • FPGA实现复杂状态机的跳转-判断标准数据帧
    填补之前的状态机跳转挖的坑;数据源对比标准帧:第一步:ROM当做数据源:使能开启,使用地址addr控制其输出。(使用状态机写入RAM时的控制选用addr)RAM作为标准帧的缓存,使用addr_ram作为RAM的写入地址。此时ROM的地址比RAM的地址延迟了一个节拍;(addr_ram<=addr;)第二步:RAM缓存写满之......
  • 基于FPGA的可控分频器设计与应用
    ###标题:基于FPGA的可控分频器设计与应用---####正文:可控分频器在数字电路中扮演着重要角色,尤其是在频率合成和时钟管理方面。基于FPGA的实现不仅灵活且易于修改,本文将详细介绍如何设计和实现一个可控分频器,并展示其应用实例。---###一、可控分频器的基本概念可控分频......
  • FPGA在图像伽玛校正中的应用
    随着数字图像处理技术的不断发展,图像质量优化成为了一个重要的研究方向。在图像处理中,伽玛(Gamma)校正是一种广泛应用的技术,用于调整图像的亮度和对比度,以改善图像质量,使之更符合人眼的视觉感知。特别是在FPGA(现场可编程门阵列)平台上实现伽玛校正,由于其高并行性和灵活性,成为了图像处......
  • FPGA中的图像平移技术
    在图像处理领域,图像平移是一种基本的几何变换操作,它能够将图像中的所有像素在二维平面上按照指定的方向和距离进行移动。这种操作不改变图像的形状或大小,但会显著影响图像在坐标系中的位置。随着FPGA(现场可编程门阵列)技术的快速发展,将图像平移算法部署到FPGA上已成为提高图像处理......
  • 转存——Quartus II FPGA程序仿真运行时出现错误“error occurred during modelsim si
    起因使用QuartusII软件进行FPGA程序仿真,运行时出现错误“erroroccurredduringmodelsimsimulation”,上网查询解决方法,找了很久都没找到,最后在一个CSDN博客的评论里找到解决方法。现将解决方法转存如下。错误示例解决步骤1.依次点击simulation,option2.依次点击Quartus......
  • FPGA图像处理实战:图像裁剪技术
    在图像处理领域,图像裁剪是一项基础且关键的技术,它允许我们从原始图像中裁剪出感兴趣的区域,同时丢弃不相关的部分。这种技术在人脸识别、目标跟踪、图像分割等多种应用场景中发挥着重要作用。随着FPGA(现场可编程门阵列)技术的快速发展,将图像裁剪算法部署到FPGA上已成为提高处理速度......
  • FPGA(现场可编程门阵列)的时序分析
    在FPGA(现场可编程门阵列)的时序分析中,tsu(建立时间)、th(保持时间)、tco(时钟到输出延时)、tpd(引脚到引脚延时)以及tcd(可能指的是信号在组合逻辑中的传输延时,尽管它在FPGA时序分析中不是一个标准的术语,但在此为全面解答而提及)是几个至关重要的参数。这些参数共同决定了FPGA电路的性......
  • FPGA实例——按键消抖和自定义IP封装
    按键消抖:简介:目前,在大部分的FPGA开发板上都带有机械按键,由于机械按键的物理特性,按键在按下和释放的过程中,存在一段时间的抖动,这就导致在识别按键的时候可以检测到多次的按键按下,而通常检测到一次按键输入信号的状态为低电平,就可以确认按键被按下了,所以我们在使用按键时往往需......
  • 使用机器学习预测FPGA的执行时间与功耗:一种创新的方法
    随着科技的飞速发展,现场可编程门阵列(FPGA)在高性能计算、数据中心、人工智能等领域的应用日益广泛。然而,FPGA设计的复杂性和功耗问题一直是制约其性能提升的关键因素。近年来,机器学习(ML)技术的兴起为FPGA的执行时间与功耗预测提供了新的解决方案。本文将探讨如何使用机器学习进行FPG......
  • 适用FPGA的小型神经网络:加速边缘智能的新篇章
    在人工智能(AI)技术日新月异的今天,神经网络作为其核心驱动力,正逐步渗透到各个行业与领域。然而,传统的神经网络模型往往受限于计算资源和功耗,难以在边缘设备上实现高效运行。现场可编程门阵列(FPGA)作为一种高性能、低功耗的硬件加速器,为小型神经网络的部署提供了理想的平台。本文将深......