1.合并两个有序数组
链接:88. 合并两个有序数组 - 力扣(LeetCode)
方法一:直接合并后排序
最直观的方法是先将数组 nums2 放进数组 nums1 的尾部,然后直接对整个数组进行排序。
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
for (int i = 0; i != n; ++i) {
nums1[m + i] = nums2[i];
}
Arrays.sort(nums1);
}
}
复杂度分析
时间复杂度:O((m+n)log(m+n))。
排序序列长度为 m+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))。
空间复杂度:O(log(m+n))。
排序序列长度为 m+n,套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))。
方法二:双指针
方法一没有利用数组 nums1与 nums2已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。
我们为两个数组分别设置一个指针 p1 与 p2 来作为队列的头部指针。代码实现如下:
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int p1 = 0, p2 = 0;
int[] sorted = new int[m + n];
int cur;
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
sorted[p1 + p2 - 1] = cur;
}
for (int i = 0; i != m + n; ++i) {
nums1[i] = sorted[i];
}
}
}
复杂度分析
时间复杂度:O(m+n)。
指针移动单调递增,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
空间复杂度:O(m+n)。
需要建立长度为 m+n 的中间数组 sorted。
方法三:逆向双指针
方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums1中,nums1中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums1中的元素呢?观察可知,nums1的后半部分是空的,可以直接覆盖而不会影响结果。因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进 nums1的最后面。严格来说,在此遍历过程中的任意一个时刻,nums1数组中有 m − p1 − 1 个元素被放入 nums1的后半部,nums2数组中有 n − p2 − 1 个元素被放入 nums1的后半部,而在指针 p1的后面,nums1数组有 m + n − p1 − 1 个位置。由于m + n − p1 − 1 ≥ m − p1 − 1 + n − p2 − 1等价于p2 ≥ −1永远成立,因此 p1后面的位置永远足够容纳被插入的元素,不会产生 p1的元素被覆盖的情况。
实现代码如下:
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int p1 = m - 1, p2 = n - 1;
int tail = m + n - 1;
int cur;
while (p1 >= 0 || p2 >= 0) {
if (p1 == -1) {
cur = nums2[p2--];
} else if (p2 == -1) {
cur = nums1[p1--];
} else if (nums1[p1] > nums2[p2]) {
cur = nums1[p1--];
} else {
cur = nums2[p2--];
}
nums1[tail--] = cur;
}
}
}
复杂度分析
时间复杂度:O(m+n)。
指针移动单调递减,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
空间复杂度:O(1)。
直接对数组 nums1原地修改,不需要额外空间。
2.移除元素
方法一:双指针
由于题目要求删除数组中等于 val 的元素,因此输出数组的长度一定小于等于输入数组的长度,我们可以把输出的数组直接写在输入数组上。可以使用双指针:右指针 right 指向当前将要处理的元素,左指针 left 指向下一个将要赋值的位置。
如果右指针指向的元素不等于 val,它一定是输出数组的一个元素,我们就将右指针指向的元素复制到左指针位置,然后将左右指针同时右移;
如果右指针指向的元素等于 val,它不能在输出数组里,此时左指针不动,右指针右移一位。
整个过程保持不变的性质是:区间 [0,left) 中的元素都不等于 val。当左右指针遍历完输入数组以后,left 的值就是输出数组的长度。
这样的算法在最坏情况下(输入数组中没有元素等于 val),左右指针各遍历了数组一次
class Solution {
public int removeElement(int[] nums, int val) {
int n = nums.length;
int left = 0;
for (int right = 0; right < n; right++) {
if (nums[right] != val) {
nums[left] = nums[right];
left++;
}
}
return left;
}
}
复杂度分析
-
时间复杂度:O(n),其中 n 为序列的长度。我们只需要遍历该序列至多两次。
-
空间复杂度:O(1)。我们只需要常数的空间保存若干变量。
方法二:双指针优化
思路
如果要移除的元素恰好在数组的开头,例如序列 [1,2,3,4,5],当 val 为 1 时,我们需要把每一个元素都左移一位。注意到题目中说:「元素的顺序可以改变」。实际上我们可以直接将最后一个元素 5 移动到序列开头,取代元素 1,得到序列 [5,2,3,4],同样满足题目要求。这个优化在序列中 val 元素的数量较少时非常有效。
实现方面,我们依然使用双指针,两个指针初始时分别位于数组的首尾,向中间移动遍历该序列。
算法
如果左指针 left 指向的元素等于 val,此时将右指针 right 指向的元素复制到左指针 left 的位置,然后右指针 right 左移一位。如果赋值过来的元素恰好也等于 val,可以继续把右指针 right 指向的元素的值赋值过来(左指针 left 指向的等于 val 的元素的位置继续被覆盖),直到左指针指向的元素的值不等于 val 为止。
当左指针 left 和右指针 right 重合的时候,左右指针遍历完数组中所有的元素。
这样的方法两个指针在最坏的情况下合起来只遍历了数组一次。与方法一不同的是,方法二避免了需要保留的元素的重复赋值操作。
class Solution {
public int removeElement(int[] nums, int val) {
int left = 0;
int right = nums.length;
while (left < right) {
if (nums[left] == val) {
nums[left] = nums[right - 1];
right--;
} else {
left++;
}
}
return left;
}
}
复杂度分析
-
时间复杂度:O(n),其中 n 为序列的长度。我们只需要遍历该序列至多一次。
-
空间复杂度:O(1)。我们只需要常数的空间保存若干变量。