首页 > 其他分享 >P11244 吻秋 题解

P11244 吻秋 题解

时间:2024-11-04 08:46:41浏览次数:3  
标签:10 used int 题解 复杂度 leq 序列 P11244

洛谷题目传送门

博客园可能食用更佳

题目大意:

给你 \(m\) 个长度为 \(n\) 的序列 \(a\),\(Q\) 次操作:

  • 1 x y 将 \(a_x\) 与 \(a_y\) 的所有元素取出至长度为 \(2n\) 的序列 \(b\),将 \(b\) 升序重排后 \(a_x \gets b_{1 \dots n},a_y \gets b_{n+1 \dots 2n}\);

  • 2 i j 询问 \(a_{i,j}\) 的值。

数据范围:\(1 \leq nm \leq 10^6,\color{red} 1 \leq m \leq 20 \color{black} ,1 \leq Q \leq 4 \times 10^5\)

题目分析:

赛时莫名其妙就 AC 了,赛后算时间复杂度才发现自己被诈骗了。

由于数据范围给定的是 \(nm\) 的大范围,故考虑开 vector 存 \(a_{1 \dots m}\) 序列,这里埋下伏笔。

首先肯定不能按照提题意直接硬做,考虑发现一下有没有什么人类智慧。

观察到操作 \(1\) 可以等价为将 \(a_x,a_y\) 升序排序后再归并,若 \(a_x,a_y\) 已经排过序了,并且发现在后续的操作中都不会使得元素的相对大小发生改变,故每个序列 \(a_i\) 最多只会被排序一次,开个桶记录一下,时间复杂度为 \(\mathcal O(m n \log n)\)。

继续观察,发现 \(m\) 很小,并且对这 \(m\) 个序列两两之间进行操作 \(1\) 后,会发现 \(a\) 会趋近于稳定的状态,即两两之间操作共 \(\frac{m(m-1)}{2}\) 次后,\(\forall i,j \in [1,m] \cap \mathbb Z,i<j\),都有 \(a_i\) 中所有的元素小于等于 \(a_j\) 中所有的元素,这部分时间复杂度为 \(\mathcal O(m^2 n)\)。

进行完上面的操作之后就可以不用归并直接判断是否需要交换就行,因为 vector 进行 swap 操作是常数复杂度,而非线性,故时间复杂度为 \(\mathcal O(Q)\)。

综上所得,总的时间复杂度为 \(\mathcal O(m n \log n +m^2 n+Q)\),足以通过此题。

有些细节见代码。

Code:

#include<bits/stdc++.h>
#define re register
#define il inline
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?0:*p1++)
using namespace std;
//快读快写 
char buf[1<<20],*p1,*p2;
il int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48),ch=getchar();}return x*f;}
il void write(int x){if(x<0)putchar('-'),x=-x;if(x>9)write(x/10);putchar(x%10+48);}
const int M=25,INF=0x3f3f3f3f;
int n,m,q;
vector<int> a[M],b;
bool used[M];
il void solve()
{
	int opt=read(),x=read(),y=read();
	if(opt==2) return write(a[x][y]),putchar('\n'),void();
	//这里简写了,等同于: 
	/*
		if(opt==2)
		{
			write(a[x][y]),putchar('\n');
			return;
		}
	*/
	// step 1 排序 
	if(!used[x]) sort(a[x].begin(),a[x].end()),used[x]=1;
	if(!used[y]) sort(a[y].begin(),a[y].end()),used[y]=1;
	// step 3 直接交换 
	int minx=a[x][1],maxx=a[x][n];
	int miny=a[y][1],maxy=a[y][n];
	//判断 a_x 中所有元素是否都小于 a_y 中所有元素可以直接用 a_x 的最大值与 a_y 的最小值比较即可
	//因为已经排序,最大最小值在首尾取到即可 
	if(maxx<=miny) return;
	if(maxy<=minx) return swap(a[x],a[y]),void();
	// step 2 归并 
	int i=1,j=1,k=0;
	while(i<=n&&j<=n)
	{
		if(a[x][i]<=a[y][j]) b[++k]=a[x][i++];
			else b[++k]=a[y][j++];		
	}
	while(i<=n) b[++k]=a[x][i++];
	while(j<=n) b[++k]=a[y][j++];
	for(re int i=1;i<=n;i++) a[x][i]=b[i];
	for(re int i=n+1;i<=n+n;i++) a[y][i-n]=b[i];
}
int main()
{
	n=read(),m=read(),q=read();
	for(re int i=1;i<=m;i++) a[i].resize(n+1);//初始化 vector 大小 
	for(re int i=1;i<=m;i++)
		for(re int j=1;j<=n;j++) a[i][j]=read();//注意从下标 1 开始读入,方便后面的排序 
	b.resize(n*2+1);
	while(q--) solve();
	return 0;
}

标签:10,used,int,题解,复杂度,leq,序列,P11244
From: https://www.cnblogs.com/lunjiahao/p/18524373

相关文章

  • 2024秋季赛部分题解(A,E,F,I,J)
    J 螺旋塔思路:一眼签到题直接写#include<iostream>#include<map>#include<vector>#include<stack>#include<queue>#include<cmath>#include<algorithm>#include<cstring>#include<string>#include<set>usingname......
  • P11229 [CSP-J 2024] 小木棍 题解
    算法一,dp首先对于\(10^5\)的数据,很明显,如果用longlong是绝对会爆炸的,所以使用string类型进行dp.定义状态\(f_i\),表示用\(i\)根木棍能拼出的最小数字.显然,可以先初始化1~7的情况.状态转移:\(f_i=cmp(f_i,f_{i-stk_j}+j).\),其中,cmp为比较函数,j为0~9......
  • JOI Open 2019 Triple Jump 题解
    原题链接可以暴力枚举\(a,b\),然后\(c\in[2b-a,n]\),找区间最大值即可。对于我们选择的\(a,b\)间,若能在\((a,b)\)中找到某个下标\(i\),满足\(h_i\geh_a\)或\(h_i\geh_b\),那么选择\(i\)是更优的。理由很简单,无论是从\(a\toi\)还是从\(b\toi\),都会扩大\(c\)的......
  • 关于深度学习模型不收敛问题解决办法
    1.问题重现笔者在训练Vgg16网络时出现不收敛问题,具体描述为训练集准确率和测试集准确率一直稳定于某一值,如下图所示。2.可能的原因2.1数据问题噪声数据。不平衡的数据集、含有噪声或异常值的数据可能导致模型难以学习,尝试更换数据集,出现这种问题比较难办。数据预处理......
  • Educational Codeforces Round 171 (Rated for Div. 2) 题解
    A.PerpendicularSegments显然构造一个\(k\timesk\)的左下角是原点的正方形即可。voidslv(){ intx,y,k;Read(x,y,k); intmn=min(x,y); if(mn*mn*2>=k*k) Write(0,'',0,'',mn,'',mn,'\n'), Write(0,......