赛时坠机了,赛后把 F 做出来了。。
刚开始做不出来,后来注意到样例输出了长度为 \(n-2\) 的询问,启发我对于每个相邻数对 \((i,i+1)\),将其删去再进行询问,其中 \(i\) 为奇数,共消耗 \(50\) 次。然后我们对输出的两个数 \(x,y\) 进行讨论:
-
如果 \(x,y\) 满足 \(x=\frac n 2,y=\frac n 2 +1\),则说明删去的两个数其中一个数小于 \(\frac n 2\),一个数大于 \(\frac n 2 +1\)。这种情况貌似对答案并不影响。
-
如果 \(x,y\) 满足 \(x<\frac n 2,y > \frac n 2 + 1\),则说明删除的数正是 \(\frac n 2\) 和 \(\frac n 2 +1\),这种情况是好处理的。
-
如果 \(x,y\) 满足 \(x=\frac n 2,y> \frac n 2+1\),则说明 \(\frac n 2+1\) 正好在这个数对里面,将其记录下来。
-
如果 \(x,y\) 满足 \(x<\frac n 2,y=\frac n 2+1\),跟上面的情况类似。
-
如果 \(x,y\) 满足 \(x<\frac n 2,y=\frac n 2\),这种情况有些复杂,也是本题的重点,数对中的数都大于等于 \(\frac n 2+1\)。
-
如果 \(x,y\) 满足 \(x=\frac n 2+1,y>\frac n 2+1\),跟上面情况类似。
发现最麻烦的是第 \(5,6\) 类点对,我们把第 \(5\) 类点对存入一个数组,第 \(6\) 类存入另一个数组,现在考虑找到包含 \(\frac n 2\) 的点对和 \(\frac n 2 +1\) 的点对,怎么找呢?其实也是简单的,直接询问第一个数组的第一个点对与第二个数组的第一个点对,第一个数组的第二个点对与第二个数组的第二个点对......这样子只要结果输出了 \(\frac n 2\) 或 \(\frac n 2+1\),我们就能够确定包含这两个数的两个点对了。
找到点对后怎么处理都行,算一下操作次数,首先要花 \(50\) 次枚举点对,然后再最多花 \(25\) 次找两个点对,最后花 \(4\) 次确定位置,总共 \(79\) 次,可以通过。
代码很丑,仅供参考:
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i (l); i <= r; ++ i)
#define rrp(i, l, r) for (int i (r); i >= l; -- i)
#define pii pair <int, int>
#define eb emplace_back
#define inf 1000000000000
using namespace std;
constexpr int N = 100 + 5, K = 10;
typedef unsigned long long ull;
typedef long long ll;
inline int rd () {
int x = 0, f = 1;
char ch = getchar ();
while (! isdigit (ch)) {
if (ch == '-') f = -1;
ch = getchar ();
}
while (isdigit (ch)) {
x = (x << 1) + (x << 3) + ch - 48;
ch = getchar ();
}
return x * f;
}
int n;
pii ask1 (int x, int y) {
cout << "? " << n - 2 << " ";
rep (i, 1, n) {
if (i != x && i != y) cout << i << " ";
}
cout << endl;
cin >> x >> y;
return pii (x, y);
}
pii ask2 (int a, int b, int c, int d) {
cout << "? 4 " << a << " " << b << " " << c << " " << d << endl;
int x, y;
cin >> x >> y;
return pii (x, y);
}
int a1[N], n1, a2[N], n2, tt;
void motherfucker () {
++ tt;
cin >> n; n1 = n2 = 0;
int f1 = 0, f2 = 0;
int x = 0, y = 0, z = 0;
rep (i, 1, n) {
pii t = ask1 (i, i + 1);
if (t.first == n / 2 && t.second == n / 2 + 1) {
if (! f1) f1 = i; else f2 = i;
} else {
if (t.first == n / 2 && t.second > n / 2 + 1) {
y = i;
} else
if (t.first < n / 2 && t.second == n / 2 + 1) {
x = i;
} else {
if (t.first < n / 2 && t.second > n / 2 + 1) {
z = i; ++ i; continue;
}
if (t.first < n / 2 && t.second == n / 2) a2[++ n2] = i;
else a1[++ n1] = i;
}
}
++ i;
}
if (z) {
if (! f1) {
rep (i, 1, n1) f1 = a1[i];
rep (i, 1, n2) f2 = a2[i];
} else {
if (! f2) {
rep (i, 1, n1) f2 = a1[i];
rep (i, 1, n2) f2 = a2[i];
}
}
pii t = ask2 (f1, f1 + 1, f2, z);
if (t.first == n / 2 || t.second == n / 2) {
cout << "! " << z << " " << z + 1 << endl;
} else cout << "! " << z + 1 << " " << z << endl;
return ;
} else {
int mn = min (n1, n2);
int l = 0, r = 0;
rep (i, 1, mn) {
pii t = ask2 (a1[i], a1[i] + 1, a2[i], a2[i] + 1);
if (t.first == n / 2 || t.second == n / 2) x = a1[i];
else l = a1[i];
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) y = a2[i];
else r = a2[i];
}
if (n2)
rep (i, n2 + 1, n1) {
pii t = ask2 (a1[i], a1[i] + 1, a2[1], a2[1] + 1);
if (t.first == n / 2 || t.second == n / 2) x = a1[i];
else l = a1[i];
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) y = a2[1];
else r = a2[1];
}
if (n1)
rep (i, n1 + 1, n2) {
pii t = ask2 (a1[1], a1[1] + 1, a2[i], a2[i] + 1);
if (t.first == n / 2 || t.second == n / 2) x = a1[1];
else l = a1[1];
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) y = a2[i];
else r = a2[i];
}
if (f1) l = f1, r = f1 + 1;
if (! l) l = r + 1; if (! r) r = l + 1;
pii t = ask2 (l, r, x, y);
int ans1 = 0, ans2 = 0;
if (t.first == n / 2 || t.second == n / 2) {
ans1 = x;
}
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) {
ans2 = y;
}
t = ask2 (l, r, x + 1, y);
if (t.first == n / 2 || t.second == n / 2) {
ans1 = x + 1;
}
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) {
ans2 = y;
}
t = ask2 (l, r, x, y + 1);
if (t.first == n / 2 || t.second == n / 2) {
ans1 = x;
}
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) {
ans2 = y + 1;
}
t = ask2 (l, r, x + 1, y + 1);
if (t.first == n / 2 || t.second == n / 2) {
ans1 = x + 1;
}
if (t.first == n / 2 + 1 || t.second == n / 2 + 1) {
ans2 = y + 1;
}
cout << "! " << ans1 << " " << ans2 << endl;
}
}
int main () {
// freopen ("1.in", "r", stdin);
int T; cin >> T;
for (; T; -- T) motherfucker ();
}
标签:Even,f1,f2,Penchick,frac,int,Medians,second,rep
From: https://www.cnblogs.com/lalaouyehome/p/18566460