首页 > 其他分享 >159.740 Intelligent Systems

159.740 Intelligent Systems

时间:2024-11-02 18:32:44浏览次数:4  
标签:set network up Systems 159.740 hidden Intelligent your best

159.740 Intelligent Systems Assignment #2 N.H.Reyes Letter Recognition using Deep Neural Nets with Softmax Units Deadline: 4th of November

Instructions: You are allowed to work in a group of 2 members for this assignment.Your task is to write a program that implements and tests a multi-layer feed-forward network forrecognising characters defined in the UCI machine learning repositoryhttp://archive.ics.uci.edu/ml/datasets/Letter+RecognitionRequirements:

  1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-upcode that will help you get started quickly with the assignment is provided via Stream.
  1. You may utilise/consult codes available in books and websites provided that you cite themproperly, explain the codes clearly, and incorporate them with the start-up codes provided.
  1. Implement a multi-layer feed-forward network using backpropagation learning and test it on thegiven problem domain using different network configurations and parameter settings. Thereshould be at least 2 hidden layers in your neural network.OFm nputnodeLegend:hidden nodoutput node = softmax unit

 Note that all nodes, except the input nodes have a bias node attached to it. 159.740 Intelligent Systems

Assignment #2

N.H.Reyes Inputs

 16 primitive numerical attributes (statistical moments and edge counts) The input values in the data set have been scaled to fit into a range of integer valuesfrom 0 through 15. It is up to you if you want to normalise the inputs before feedingthem to your network.

  1. Data setsUse the data set downloadable from:

http://archive.ics.uci.edu/ml/datasets/Letter+Recognition

Training set: use the first 16,000

Test set/Validation set: use the remaining 4,000

ubmit your training data, validation/test data in separate files.

Performance measure:

 Mean Squared Error (MSE)

 Percentage of Good Classification (PGC)

 Confusion Matrix (only for the best Neural Network configuration found)

  1. Training

 Provide a facility for shuffling data before feeding it to the network during training

 Provide a facility for continuing network training after loading weights from file (do notreset the weights).

 Provide a facility for training the network continuously until either the maximumepochs have been reached, or the target percentage of good classification has been met.

 For each training epoch, record the Mean Squared Error and the Percentage of GoodClassification in a text file. You need this to plot the results of training later, tocompare the effects of the parameter settings and the architecture of your network.

  1. Testing the Network

Calculate the performance of the network on the Test set in terms of both the MSE andPGC.

Network Architecture

It is up to you to determine the number of hidden layers and number of hidden nodesper hidden layer in your network. The minimum number of hidden layers is 2.

Use softmax units at the output layer

Experiment with ReLU and tanh as the activation functions of your hidden units

Determine the weight-update formulas based on the activation functions used

  1. Provide an interface in your program for testing the network using an input string consisting ofthe 16 attributes. The results should indicate the character classification, and the 26 actualnumeric outputs of the network. (the start-up codes partly include this functionality already, for

a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for themultiple hidden layer architecture that you have designed).

  1. Provide an interface in your program for:
  2. Reading the entire data set
  3. Initialising the network
  4. Loading trained weights
  5. Saving trained weights
  6. Training the network up to a maximum number of epochs 159.740 Intelligent SystemsAssignment #2
  1. Testing the network on a specified test set (from a file)
  2. Shuffling the training set.
  3. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the bestconfiguration that delivered the best experiment results.
  1. Use a fixed random seed number (123) so that any randomisation can be replicated empirically.
  2. It is up to you to write the main program, 代写159.740 Intelligent Systems  and any classes or data structures that you mayrequire.
  1. You may choose to use a momentum term or regularization term, as part of backpropagationlearning. Indicate in your documentation, if you are using this technique.
  1. You need to modify the weight-update rules to reflect the correct derivatives of the activationfunction used in your network architecture.
  1. Provide graphs in Excel showing the network performance on training data and test data(similar to the graphs discussed in the lecture).
  1. Provide the specifications of your best trained network. Fill-up Excel workbook(best_network_configuration.xlsx).
  1. Provide a confusion matrix for the best NN classifier system found in your experiments.
  2. Provide a short user guide for your program.
  3. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment.

Criteria for marking

 Documentation – 30%o Submit the trained weights of your best network (name it as best_weights.txt)

o Generate a graph of the performance of your best performing network (MSE vs.Epochs) on the training set and test set.o Generate a confusion matrix of your best network

o fill-up the Excel file, named checklist.xlsxo fill-up the Excel file, named best_network_configuration.xlsx

o provide a short user guide for your program System implementation – 70%Nothing follows.

N.H.Reyes

标签:set,network,up,Systems,159.740,hidden,Intelligent,your,best
From: https://www.cnblogs.com/CSSE2310/p/18521603

相关文章

  • TOYOTA SYSTEMS Programming Contest 2024(AtCoder Beginner Contest 377) 补题记录(A-E
    AtCoderBeginnerContest377A-RearrangingABC字符串有ABC三个字母即可。#include<bits/stdc++.h>usingnamespacestd;#defineintlonglongsignedmain(){ strings; cin>>s; map<char,int>mp; for(autot:s){ mp[t]=1; } if(mp[......
  • CSCI235 – Database Systems
    CSCI235 – Database Systems2024 S4Implementation Task 2Dueon 7 November 2024ScopeTheImplementationofTask2 is relatedtothecontents oftopic on Indexing.This Implementation is due byThursday, 7 November 2024, 9:00 pm Singa......
  • 第六届智能控制、测量与信号处理国际学术会议 (ICMSP 2024) 2024 6th International
    @目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus三、大会介绍第六届智能控制、测量与信号处理国际学术会议(ICMSP2024)由西安石油大学、中海油田......
  • 2024年计算机科学与智能算法国际论坛(CSIA 2024) 2024 International Symposium on C
    @目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus三、大会介绍2024年计算机科学与智能算法国际论坛(CSIA2024)将作为主会议第六届智能控制、测......
  • 2024智能机器人与自动控制国际学术会议 (IRAC 2024) 2024 International Conference on
    @目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus三、大会介绍2024智能机器人与自动控制国际学术会议(IRAC2024)由华南理工大学主办,会议将于2024......
  • MIT-OC Electrochemical Energy Systems4-1
    四、输运现象L16浓度极化目录浓度极化的背景线性扩散与对流2.1费克定律2.2分子随机游走与扩散系数2.3质量守恒与对流扩散方程极限电流密度3.1浓度极化的三种基本机制3.2极限电流的定义3.3极限电流密度的推导固体氧化物燃料电池实例4.1电池反应及稳态扩散4.2......
  • MIT-OC Electrochemical Energy Systems 3-4
    三、反应动力学L15离子吸附与嵌入目录中性物质的表面吸附与嵌入1.1平衡态1.1.1Langmuir等温线1.1.2Frumkin等温线1.2动力学1.2.1标准吸附动力学1.2.2过渡态模型1.2.2.1仅考虑排斥体积的模型1.2.2.2考虑相互作用的模型吸附/嵌入过程中的法拉第反应2.1......
  • CS 551 Systems Programming
    CS551SystemsProgramming,Fall2024ProgrammingProject1Out:10/13/2024Sun.Due:10/26/2024Sat.23:59:59Inthisprojectyouraregoingtoimplementacustommemorymanagerthatmanagesheapmemoryallocationatprogramlevel.Herearethereasonswh......
  • IPMI(智能平台管理接口,Intelligent Platform Management Interface)是一种行业标准的接
    IPMI(智能平台管理接口,IntelligentPlatformManagementInterface)是一种行业标准的接口规范,主要用于服务器和计算机系统的管理。它提供了硬件监控和管理功能,使管理员能够远程监控和控制计算机系统。以下是IPMI的一些主要特点和功能:主要特点硬件监控:IPMI能够监控系统的硬件状态......
  • AI 大模型:Intelligent Agent—— 开启智能新纪元
    在LLM语境下,Agent理解为在某种能自主理解、规划决策、执行复杂任务的智能体,LLM充当着智能体的“大脑”。从软件工程的角度,智能体是一种基于大语言模型的,具备规划思考能力、记忆能力、使用工具函数的能力,能自主完成给定任务的计算机程序。在基于LLM的智能体中,LLM的充......