首页 > 其他分享 >NHE2530FNW PCA, Clusters and Grid

NHE2530FNW PCA, Clusters and Grid

时间:2024-10-31 18:41:47浏览次数:1  
标签:code Python your will using Clusters NHE2530FNW PCA parallel

1HE UNIVERSITY OF HUDDERSFIELD School of Computing and Engineering

ASSIGNMENT SPECIFICATION Module

DetailsModule CodeNHE2530FNWModule TitlePCA, Clusters and GridsCourse Title/sBEng (Hons) Electronic Engineering and Computer SystemsAssessmentWeighting, Type and Contact DetailsTitlePython for Parallel computing project Weighting26% Mode of working forassessment taskIndividualNote: if the assessment task is to be completed on an individualbasis there should be no collusion or collaboration whilst working onand subsequently submitting this assignment.

Module LeaderDr S AMAMRA [email protected]

odule Tutor/sDr A FARZAMNIAubmissionSubmission and Feedback DetailsHand-out date

16/09/2024How to submit yourworkBrightspace/TurnitiSubmission date/s17/11/2024 by 12:00 noon – if you have any technical issuesubmitting your work, please contact the Module Leader assoon as possible.DO NOT use the work of another student - this includesstudents from previous years and other institutions, as welascurrent students on the moduleDO NOT make your work available or leave insecure, forother students to view or use.

  1. Any examples provided by the module tutor should bappropriately referenced, as should examples from externalsources.Further guidance can be found in the SCEN Academic SkillResource and UoH Academic Integrity Resource module inBrightspace.Guidance on using AI:Level – Not PermittedThe use of AI tools is not permitted in any part of thiassessment.School Guidance andSupporIf you experience difficulties with this assessment or with timemanagement, please speak to the module tutor/s, yourPersonal Academic Tutor, or the Student Progress Mentors.Student Progress Mentor – useful links.3Additional GuidancInformatioDetails
  • Brightspace Module - SCE Student Progress Mentors(hud.ac.uk).
  • Email - [email protected] an appointment - http://hud.ac/rglRequesting a LateSubmissionIt is expected that you complete your assessments by thepublished deadlines. However, it is recognised that there canbe unexpected circumstances which may affect you being ablto do so. In such circumstances, you maysubmit a request foran extension.

Extension applications must be submitted before the publisheassessment deadline has passed.To apply for an extension, you should access the ExtensionSystem on MyHud.ExtenuatingCircumstances (ECs)An EC claim is appropriate in exceptional circumstances, whenan extension is not sufficient due to the nature of the request.

You can access details on the procedure for claiming ECs, on

the Registry website; Consideration of Personal Circumstances- University of Huddersfield, where you can also access theEC Claim Form.You will need to submit independent, verifiable evidence foryour claim to be considered.Once your EC claim has been reviewed you will get an ECoutcome email from Registry.An approved EC will extend the submission date to the next

assessment period (e.g July resit period).Late代 写NHE2530FNW PCA, Clusters and Grid  Submission(No ECs approved)Late submission, up to 5 working days, of the assessmentsubmission deadline, will result in your grade being capped ta maximum of a pass mark.Submission after this period, without an approved extension,will result in a 0% grade for this assessment component.AdditionalGuidanceInformationDetailsTutor ReferralavailabYESResources

  • Please note: you can access free Office365 softwareand you have 500 Gb of free storage space available onMicrosoft’s OneDrive – Guidance on downloading Office365.PythoAssignment Title Computer Cluster and Cloud Project
  1. Assignment AimsThe aim of this assignment is to investigate parallel computing / processing using Python and it is based on practical laboratory work that consist of three distinct components:
  • Test and validation of a serial Python Program to find roots of a QuadraticEquation.
  • Parallel a serial program in the above point using Multiprocessing packageon Python.
  • Parallel a serial program in the above point using Joblib package on Python.
  • Compare Multiprocessing and Joblib performance on Python to parallelserial programs.
  1. Learning Outcomes:

Knowledge and Understanding Outcomes

  1. Examine and compare the parallel computing packages on Python, and assess theirperformance, and theoretical speed up of parallel processing applications. Ability Outcomes
  1. Deploy a parallel processing program, using Python, using environment software.
  2. Evaluate different Python packages for parallel processing using appropriatepackage tools, in order to justify their applicability/non-applicability in running specific engineering or scientific application.
  1. Assessment Brief

This is an individual assignment, assessed by individual laboratory report. The following serial code (Fig.1) is to find the Roots of a Quadratic Equation. Themathematical representation of a Quadratic Equation is ax²+bx+c = 0. A QuadraticEquation can have two roots, and they depend entirely upon the discriminant.

  • If discriminant > 0, then Two Distinct Real Roots exist for this equation
  • If discriminant = 0, Two Equal and Real Roots exist.6
  • And if discriminant < 0, Two Distinct Complex Roots exist

The serial program Figure.1Assignment objectives:

  • Discuss parallel computing on Python with available different libraries?
  • Please specify the difference between process and thread.
  • Find out the number of your processors on your computer using the multiprocessingpackage.
  • Use multiprocessing package to parallel the code in Figure-1 and record the runningime. Hint: You may need to check out the pool.apply function.
  • Use joblib package to parallel the code in Figure-1 and record the running time.
  • Produce a laboratory report detailing
  1. Research on the use of Python for parallel processing.
  2. Development of a code using multiprocessing package.
  3. Development of a code using joblib package.
  4. Performance analysis for the developed programs.
  5. Benchmarking – comparison of the developed programs.

Marking Scheme

The assignment work will be assessed through laboratory report.

The laboratory report should have a well-defined structure similar to the following:

Organisation and content (70%)

标签:code,Python,your,will,using,Clusters,NHE2530FNW,PCA,parallel
From: https://www.cnblogs.com/CSSE2310/p/18517775

相关文章

  • opencv PCA 主轴方向角度范围
    PCA主轴方向角度,范围  [-45,135] 度点集排序(从左到右、从右至左)不同,角度在-45度时有差异doublecalLineOrientationInDegree(constvector<Point>&pts){//Constructabufferusedbythepcaanalysisintsz=static_cast<int>(pts.size());Matda......
  • 学习日记_241025_核主成分分析(KPCA)
    前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。相关链接:KPCA算法:从原理到Python代码实现全面解......
  • SPSS、R 语言因子分析FA、主成分分析PCA对居民消费结构数据可视化分析
    全文链接:https://tecdat.cn/?p=37952原文出处:拓端数据部落公众号分析师:TingMei 在经济发展的大背景下,居民消费结构至关重要。本文围绕居民消费结构展开深入研究,运用SPSS25.0和R语言,以因子分析法和主成分分析法对东北三省居民消费价格指数及全国城镇居民消费性支出指标进......
  • 基于支持向量机和降维PCA的人脸识别实战
    公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~今天给大家介绍一个基于支持向量机SVM和PCA降维的人脸识别的实战案例,主要包含:人脸数据lfw数据集下载PCA降维基于SVM的分类模型构建模型分类预测结果可视化效果如下图:基于SVM和PCA算法的人脸识别使用数据为fetch_l......
  • C - npcapc
    C-npcapc题意有\(t\)次询问,每次给出一个\(n\),问有多少个长度为\(n\)的包含大小写的字符串满足包含\(\texttt{NPCAPC}\)和\(\texttt{npcapc}\)两个子序列。\(t\le5000,n\le10^9\)。思路首先考虑直接计数,发现要去重,需要很复杂的容斥,很难做。考虑DP然后矩阵快速......
  • php8:开启opcache+jit和不开启opache+jit有多大区别?
    一,测试环境:PHP8.3.9LaravelFramework11.15.0接口没访问数据,只是从redis取数据二,不开启opache+jit访问10次数据用时148147129128129124128127236129三,开启opache+jit后访问10次数据用时36243123322232644021区别还是很大的,说明最起码对于laravel......
  • Linux系统之ipcalc命令的基本使用
    (Linux系统之ipcalc命令的基本使用)一、ipcalc命令介绍ipcalc命令是一个用于计算和显示IP地址和子网掩码相关信息的工具。它可以帮助用户快速计算出IP地址、子网掩码、网络地址、广播地址等信息。二、ipcalc命令的使用帮助2.1ipcalc命令的help帮助信息使用--help,查询ipca......
  • 机器学习主成分分析算法 PCA—python详细代码解析(sklearn)
    一、问题背景在进行数据分析时,我们常常会遇到这样的情况:各个特征变量之间存在较多的信息重叠,也就是相关性比较强。就好比在研究一个班级学生的学习情况时,可能会收集到学生的语文成绩、数学成绩、英语成绩等多个特征变量。但往往会发现,语文成绩好的学生,数学和英语成绩也可能比......
  • 鸢尾花数据-朴素贝叶斯、PCA,高斯混合聚类
    目录1.导入相关模块2.导入数据和画图3.分割数据有监督学习示例:鸢尾花数据分类4.高斯朴素贝叶斯无监督学习示例:鸢尾花数据降维5.PCA数据降维无监督学习示例:鸢尾花数据聚类6.高斯混合模型1.导入相关模块importnumpyasnpimprortpandasaspdimportmatplotlib.pyplotasplt......
  • “降维模糊C均值(PCA-FCM)”创新算法的聚类与可视化
    在这篇博客中,我们将探讨一个MATLAB代码示例,它展示了如何从Excel文件导入数据,进行模糊C均值(FCM)聚类,并通过2D和3D图形可视化聚类结果。让我们一步一步地深入这个过程!1.环境准备首先,我们需要清空工作环境,以确保没有旧变量干扰我们的结果。这可以通过以下几行代码实现:clear;cl......