首页 > 其他分享 >揭秘”大模型加速器”如何助力大模型应用

揭秘”大模型加速器”如何助力大模型应用

时间:2024-10-31 14:44:49浏览次数:3  
标签:AI 模型 学习 acge 加速器 文档 解析 揭秘

文章目录
  • 一、大模型发展面临的问题
  • 二、“大模型加速器”助力突破困难
    • 2.1 现场效果展示
      • 2.1.1 大模型加速器——文档解析引擎
      • 2.2.2 图表数据提取
  • 三、TextIn智能文档处理平台
    • 3.1 在线免费体验
      • 3.1.1 数学公式提取
      • 3.1.2 表格数据提取
  • 四、acge文本向量化模型
    • 4.1 介绍
    • 4.2 技术创新
    • 4.3 模型优势
  • 五、总结

一、大模型发展面临的问题

当前,大模型在人工智能领域的应用正日益广泛,但在处理中文文本时,却面临着多重挑战:

1、中文预料相对较少,这限制了大模型在中文领域的学习和推理能力。与英文等语言相比,中文语料库的规模较小,尤其是在特定领域和场景下的高质量语料更是稀缺,这使得大模型在训练过程中难以充分捕捉到中文的复杂性和多样性。

2、高质量文档解析的困难也进一步加剧了大模型在中文处理中的挑战。文档解析是自然语言处理领域的重要任务之一,它涉及对文档进行结构化和信息抽取,以便更好地理解文档内容。然而,中文文档的复杂性、多样性以及语义的丰富性,使得高质量文档解析变得尤为困难。现有的解析技术往往难以准确捕捉中文文档中的深层含义和复杂结构,这限制了大模型在文档理解和信息抽取方面的能力。

3、语料质量低也是大模型在处理中文文本时面临的一个问题。现有的中文语料库中,往往存在噪声、错误、不规范表达等问题,这些问题会严重影响大模型的训练效果和性能。高质量的预料是训练出优秀大模型的基础,但目前在中文领域,高质量预料的获取和整理仍是一个亟待解决的难题。

二、“大模型加速器”助力突破困难

在今年的世界人工智能大会期间,合合信息为大模型打造的“大模型加速器”备受关注。

2.1 现场效果展示

2.1.1 大模型加速器——文档解析引擎

在大模型训练的上游阶段,合合信息“大模型加速器”中的文档解析引擎凭借卓越的技术实力和创新能力,为大模型在文档解析领域的工作带来了一场变革。该引擎基于先进的自然语言处理(NLP)和计算机视觉技术,能够自动从复杂多样的非结构化(文本、表格、图像等)和半结构化文档中精准抽取关键数据,支持金融、法律、医疗、人力资源等多个知识领域的文档,极大地提升了信息处理的效率和准确性,为大模型输送珍贵的语料。

对于版面布局复杂的文档,如多栏布局、多图表嵌入的文件,TextIn能够精确还原阅读顺序,并支持Markdown、Json等多种格式的输出,为大模型提供高效、精准的序列文字输入。

更值得一提的是,TextIn文档解析工具还采用了文档树提取技术,能够为长文档构建详尽的文档树结构,准确判断文档的逻辑层次,为后续的Embedding优化提供了坚实的基础。

TextIn通用文档解析将100页文档解析速度提升至最快1.5秒以内:

P50(百页)P90(百页)P99(百页)平均(单页)
TextIn1.46s1.75s2.07s0.015s

表格中“P50”代表中位数响应时间,表示有一半的响应时间低于1.46s,而另一半高于这个值;“P90”代表 90% 的响应时间,表示90%的文档解析操作都在1.75秒以内完成;平均单页仅耗时0.015s,极大的提升了大模型文档解析速度。

2.2.2 图表数据提取

利用先进的文档解析引擎,能够高效地从复杂的文档中提取出关键的图表数据。通过智能识别图表中的线条、柱状、饼图区域等元素,并结合OCR(光学字符识别)技术读取图表中的标签和数值,文档解析引擎能够将这些视觉信息转化为结构化的数据格式,便于后续的数据分析、可视化或报告生成。这一技术不仅自动化了原本繁琐的手动数据收集过程,还显著提高了数据的准确性和提取速度。

支持以下多种多样的图表数据提取:

三、TextIn智能文档处理平台

3.1 在线免费体验

我们先来体验一下TextIn智能文档处理平台,官网地址(https://cc.co/16YSIZ):

3.1.1 数学公式提取

博主这里找了一个超复杂的数学公式图片,让我们来试试效果如何(大家可以保存图片自行去官网尝试https://cc.co/16YSIZ):

点击上传本地文件,刚一上传立马就提取出来了:

可以看到无论是文字还是公式都能非常准确的提取出来,字母大小写也没有任何错误,效果非常Nice,响应速度还非常快,以后提取别人的算法公式再也不愁了!

3.1.2 表格数据提取

接下来我们来试试常见的表格数据提取效果如何,博主这里找一个销售数据汇总表(大家可以保存图片自行去官网尝试https://cc.co/16YSIZ):

提取速度非常快速并且对于“,”和“.”数据符号识别准确无误,大家可以选择直接复制结果或者导出数据:

TextIn智能文档处理平台在智能文字识别领域发展了17年。该平台专注于图像处理、模式识别、神经网络、深度学习、结构化文本识别(STR)、自然语言处理(NLP)以及知识图谱等前沿人工智能技术的研究与创新。

四、acge文本向量化模型

4.1 介绍

合合信息“大模型加速器”集成了先进的acge_text_embedding模型(简称“acge模型”)可以有效优化“已读乱回”的“幻觉”的问题。通过对海量多领域数据的精细分析和学习,极大地提升了大模型在知识推理、智能问答和个性化推荐等方面的能力、速度和可靠性。acge模型的应用不仅使搜索和问答系统能够超越简单的文本匹配,更能深入洞察并精准回应用户的真实需求。

此外,acge模型还融入了持续学习训练方式,有效解决了传统神经网络在持续学习过程中容易出现的“知识覆盖”或“知识混淆”问题,确保了模型在知识积累的同时,能够保持对过往知识的稳定记忆。

有需求的小伙伴可以打开官网(https://cc.co/16YSIr)进行体验:

4.2 技术创新

Embedding算法是一种将高维离散数据(如单词、图像、物品等)映射到低维连续向量空间的技术。这种映射过程是通过训练一个模型(如神经网络)来学习的,使得相似的数据在向量空间中具有相近的表示。Embedding算法能够捕捉数据的潜在结构和语义信息,将复杂的原始数据转化为易于计算机处理和分析的向量形式。这种向量化表示不仅简化了数据的处理流程,还提高了机器学习模型的性能和效率。Embedding算法在自然语言处理、计算机视觉、推荐系统等多个领域都有广泛的应用,为各种任务提供了有效的特征表示方法。基于Embedding的检索系统流程图如下:

为了提高模型的效果,合合信息基于Embedding算法加入了对比学习技术,优化文本语义表示,通过最小化相似文本间的距离和最大化不同文本间的距离来精准捕捉语义差异;重视数据集的广度和质量,通过多场景和大量数据的挖掘提升模型泛化能力,同时精选高质量数据加速模型收敛;在技术开发中,采用多任务混合训练策略,结合多loss函数以适应不同任务需求,确保模型全面性能;引入持续学习机制,缓解新数据引入时的模型遗忘问题;并运用MRL技术训练可变维度嵌入,提升处理速度并降低存储成本。

4.3 模型优势

“acge模型”在中文文本向量化领域取得了重大突破并荣获 Massive Text Embedding Benchmark (MTEB) 中文榜单(C-MTEB)第一名的成绩:

相较于当前C-MTEB榜单上备受瞩目的开源模型,合合信息发布的acge模型凭借其轻量级的设计,展现了出色的资源占用优势。该模型不仅体积较小,对计算资源的需求也相对较低,从而降低了部署成本。此外,acge模型的文本处理能力尤为突出,支持最大输入文本长度为1024,足以应对绝大多数实际应用场景的需求。更为值得一提的是,acge模型还支持灵活的可变输出维度设置,使得用户能够根据具体任务或场景,自由调整模型输出,从而更高效地利用资源,实现最佳的文本处理效果。

目前,acge模型已在多个关键应用场景中充分展现其卓越性能:

1、文档分类:acge模型通过结合OCR技术,能够精准识别图片、文档等场景中的文字内容。利用强大的文本编码能力,结合先进的语义相似度匹配技术,构建高效的通用文档分类模型,实现快速且准确的文档分类。

2、长文档信息抽取:面对复杂的长文档,acge模型通过独特的文档解析引擎和层级切片技术,能够快速生成精准的向量索引。这些索引不仅提高了检索效率,还使得我们能够精确抽取内容块,从而显著提升长文档信息抽取模型的精度和效率。

3、知识问答:acge模型通过文档解析引擎和层级切片技术,能够迅速生成向量索引,并精准定位文件内容。能够为用户提供更加精准、高效的知识问答服务,满足用户对信息检索和查询的多样化需求。

五、总结

本次世界人工智能大会现场,合合信息的“大模型加速器”凭借其卓越的高准确性和稳定性,实现了表格内容精准还原、复杂样本高效处理以及多语言文档快速识别,通过其强大的多语言识别技术和多类型文档支持能力,该“加速器”为金融、医学、财经、媒体等多个行业提供了高效、准确且实用的文档解析服务。

目前,这一大模型“加速器”已受到多家大模型厂商的青睐,并被广泛应用于多领域的文档解析中,帮助大模型更加顺畅地融入各类专业课场景,助力各行业实现数字化转型和智能化升级。

零基础如何学习AI大模型

点击下方蓝色字 即可免费领取↓↓↓

**读者福利 |**

标签:AI,模型,学习,acge,加速器,文档,解析,揭秘
From: https://blog.csdn.net/HUANGXIN9898/article/details/143398853

相关文章

  • 哥伦比亚大学杨立昆演讲:大模型只是AI发展阶段性成果,但下一步AI革命制胜关键不会依赖于
    在昨天哥伦比亚大学最新一期的AI讲座上,Meta首席科学家YannLeCun(杨立昆)分享了他对人工智能未来的深刻见解。作为深度学习领域的先驱者和2018年图灵奖得主,LeCun的观点引发了广泛关注。这位法国计算机科学家的学术之路充满传奇。从1987年在索邦大学提出开创性的反向传播算法,到1989......
  • 大模型导论
    为什么大模型相比中小模型,有更突出的性能和泛化能力,也许大多数人并没有想过这个问题,业内一般从函数曲线拟合的角度,来理解模型为什么能解决现实中的问题。1、模型为什么越大,性能和泛化越好?在AI领域,对需要解决的业务问题,将其视为满足一定条件的数据分布,先通过特征工程的方式,从......
  • BitNet.cpp:革新性的1比特LLM推理框架,让CPU也能驾驭百亿参数大模型!
    ......
  • 揭秘JDQ限流架构:实时数据链路的多维动态带宽管控
    作者:京东零售饶璐1、背景在数字化转型的浪潮席卷之下,大数据和云计算技术已成为企业创新和发展的关键驱动力。尤其是以京东为代表的电商平台为例,其日常运营中持续生成海量数据,涵盖实时交易记录、点击曝光统计及用户行为轨迹等,这些数据对精准业务决策、深化用户体验优化等方面具......
  • Java - 文字识别 ;示例代码基于SpringAI和国产大模型
    文字识别在Java开发中的应用在Java开发中,将图像中的文字进行识别能力被广泛应用于多种场景,比如自动审核图片内容、商品搜索分析等。过去,这类需求主要通过OCR(光学字符识别)技术来实现,但其对于复杂图像的处理效果往往不尽人意。如今,随着大模型技术的发展,利用这些先进的AI模型......
  • 小熊猫模型来了:最强生图模型,支持矢量图生成
    生图模型竞技场榜一red_panda模型今天正式公布——RecraftV3,世界上唯一可以生成长文本图像的模型,而不仅仅是一两个单词,当然手指、手、腿和身体比例也不在话下。在设计上还引入了更多的控制能力,包括指定文本位置和大小,结合其他图片,风格控制等,此外它还提供了一个支持样式一致......
  • 如何在本地部署大语言模型:工具与指南
    在快速发展的人工智能领域,大语言模型(LLMs)正成为各类应用的核心。无论是在智能客服、内容生成,还是在教育与医疗等领域,这些模型的应用潜力巨大。然而,云端服务的高昂费用和数据隐私的担忧,让越来越多的用户希望能够在本地环境中部署这些强大的模型。本文将详细介绍如何利用多款......
  • 交互式多模型专栏推荐
    交互式多模型(IMM)是一种用于状态估计和目标跟踪的算法,适合处理目标运动模式变化的情况。它结合多个运动模型,如匀速、转弯和加速模型,通过实时更新和加权融合各模型的状态,提高估计精度。IMM使用转移概率矩阵来管理模型之间的切换,并根据观测数据更新每个模型的概率。广泛应用于......
  • CIM城市信息模型
    1998年1月31日,美国前副总统戈尔发表了著名的“数字地球”主题演讲之后,得到了许多国家的认可,推动了数字地球、数字国家、数字城市的研究开发与应用。今天,在智慧城市建设热潮中,我们几乎听不到“数字国家”和“数字城市”的声音了。但是,这并不意味着“数字城市”已经过时了,相反现......
  • 多模型COE方法
    1.概述在当前的人工智能发展中,单一模型的表现往往难以满足复杂任务的需求。为应对这些挑战,多模型协作的方法应运而生,“专家组合”(MixtureofExperts)便是其中一种有效的模型协作方法。专家组合不仅能提升模型的准确性,还能通过合理分工提升效率,提供跨领域的综合解决方案。本文将从......