首页 > 其他分享 >torch--fashion-minst分类

torch--fashion-minst分类

时间:2024-10-31 11:10:57浏览次数:3  
标签:-- self torch minst iter train test net def

实现方式一:手动实现

# Fashion-MNIST分类
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display
import matplotlib.pyplot as plt
from dynamic_plot_loss_acc import DynamicPlotProcessData


# d2l.use_svg_display()

# ----读取数据集---- #
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
# trans = transforms.ToTensor()
# mnist_train = torchvision.datasets.FashionMNIST(
#     root="../data",
#     train=True,
#     transform=trans,
#     download=True)
# mnist_test = torchvision.datasets.FashionMNIST(
#     root="../data",
#     train=False,
#     transform=trans,
#     download=True)
#
# len(mnist_train), len(mnist_test)
# mnist_train[0]           # 包括图片和标签
# mnist_train[0][0].shape  # 图片 torch.Size([1, 28, 28])
# mnist_train[0][1]        # 标签


def get_fashion_mnist_labels(labels):
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes


# ----读取小批量---- #
batch_size = 256


def get_dataloader_workers():
    """使用4个进程来读取数据"""
    return 4


# 整合所有组件
def load_data_fashion_mnist(batch_size, resize=None):
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


# len(mnist_train), len(mnist_test)
# mnist_train[0][0].shape
train_iter, test_iter = load_data_fashion_mnist(batch_size)  # , resize=64
len(train_iter), len(test_iter)
train_iter.dataset.__getitem__(0)[0].shape
train_iter.dataset.__getitem__(0)[1]

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
W.shape    # torch.Size([784, 10])
b.shape    # torch.Size([10])


#
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制


# 定义模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)


# y = torch.tensor([0, 2])
# y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
# y_hat[[0, 1], y]   # 等价于y_hat[[0, 1], [0, 2]] 取出y_hat中的0行0列,1行2列的数据


def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])


def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())


def evaluate_accuracy(net, data_iter):
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]


class Accumulator:
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# 训练
def train_epoch_ch3(net, train_iter, loss, updater):
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]


class Animator:
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5), pic_name=None):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
        self.pic_name = pic_name

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        plt.draw()
        plt.pause(0.1)
        plt.savefig(self.pic_name)
        display.display(self.fig)
        display.clear_output(wait=True)

    def show(self):
        display.display(self.fig)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'], pic_name="Fashion_mnist")

    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
        animator.show()
        print(f"epoch:{epoch}, test_acc:{test_acc}, train_loss:{train_metrics[0]}, train_acc:{train_metrics[1]}")

    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc


lr = 0.1


# 优化器
def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)


num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)


def predict_ch3(net, test_iter, n=6):
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        # break
        trues = d2l.get_fashion_mnist_labels(y)
        preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
        titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
        d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])


predict_ch3(net, test_iter)


实现方式二:调用nn中的函数

# Fashion-MNIST分类
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display
import matplotlib.pyplot as plt


def get_fashion_mnist_labels(labels):
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes


def get_dataloader_workers():
    """使用4个进程来读取数据"""
    return 4


# 整合所有组件
def load_data_fashion_mnist(batch_size, resize=None):
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 10
train_iter, test_iter = load_data_fashion_mnist(batch_size)     # 不进行resize操作, resize=64

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


net.apply(init_weights)

loss = nn.CrossEntropyLoss(reduction='none')

# 优化器
trainer = torch.optim.SGD(net.parameters(), lr=0.001)


def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())


def evaluate_accuracy(net, data_iter):
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]


class Accumulator:
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# 训练
def train_epoch_ch3(net, train_iter, loss, updater):
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]


class Animator:
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5), pic_name=None):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
        self.pic_name = pic_name

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        plt.draw()
        plt.pause(0.1)
        plt.savefig(self.pic_name)
        display.display(self.fig)
        display.clear_output(wait=True)

    def show(self):
        display.display(self.fig)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'], pic_name="Simple_Fashion_mnist")
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc


num_epochs = 10
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)


def predict_ch3(net, test_iter, n=6):
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])


predict_ch3(net, test_iter)

标签:--,self,torch,minst,iter,train,test,net,def
From: https://www.cnblogs.com/jackchen28/p/18517318

相关文章

  • java Web 时间LocalDateTime 输出到前端格式化
    格式化时间返回到前端 packagecom.za.edu.config;importcom.fasterxml.jackson.databind.DeserializationFeature;importcom.fasterxml.jackson.databind.ObjectMapper;importcom.fasterxml.jackson.databind.module.SimpleModule;importcom.fasterxml.jackson.datab......
  • Docker 如何开启远程访问
    Docker开启远程访问需要确保Docker守护进程(Daemon)配置了适当的监听地址、调整防火墙规则来允许合适的网络访问,并确保了安全性措施,如使用TLS加密。具体步骤包括编辑Docker服务文件、修改启动参数、重新启动服务和设置防火墙规则。首先,要启动Docker的远程访问功能,我们需要修......
  • Seinfeld on Blu-ray, 4k UHD
    nowforpre-orderonAmazonDVD: https://www.amazon.com/Seinfeld-Complete-Box-Set-Repackage/dp/B07FVFL6K5/ref=tmm_dvd_title_0?_encoding=UTF8&amp&qid=1702581322&amp&sr=1-1Blu-ray: https://www.amazon.com/dp/B0DLF65P9R4kUHD: https://www.am......
  • 微服务
    一、微服务(Microservices):1、定义微服务是一种软件架构风格,将单个应用程序分解为多个小的、独立部署的服务,每个服务运行在其独立的进程中,并通过轻量级的通信机制(通常是HTTP或消息队列)进行交互。每个微服务专注于完成单一业务功能。2、特点模块化:每个微服务都是一个独立的......
  • Go 中修改切片副本的注意事项
    在Go编程中,切片是一种非常常用的数据结构。理解如何正确地修改切片中的元素非常重要,特别是当我们需要更改这些元素的值时。在这篇文章中,我们将探讨在切片中修改元素的不同方法,并讨论何时使用值切片和指针切片。1.使用值切片在Go中,使用值切片(例如[]wmsModel.OrderProduct)意......
  • echarts 睡眠时间段+日期
    效果图:关键方法代码:constinitChartDataTwo=(scollectT,dataL)=>{//给一个测试的数据scollectT=["2024-10-29","2024-10-25","2024-10-24","2024-10-22","2024-10-18","2024-10-16",......
  • python 备份文件,从 D盘 到Z盘。并且保留15天的文件
    备份文件,从D盘到Z盘。并且保留15天的文件importosimportshutilfromdatetimeimportdatetime,timedeltadefmove_and_clean_folders(a_folder,b_folder,keep_count=15):try:#获取前两天的日期yesterday=datetime.now()-timedelta(days=......
  • 固液混合铝电解电容与固态电容的区别
    介电材料、性能特点、应用场景‌固液混合铝电解电容与固态电容的主要区别在于介电材料、性能特点和应用场景。‌介电材料‌固态电容‌:采用导电性高分子材料作为介电材料,这种材料不会与氧化铝产生化学反应,通电后不会发生爆炸,也不会因受热膨胀而导致爆裂‌1。‌固液混合电容‌:......
  • 字符串数组转换为整数数组
    在C#中,可以使用Array.ConvertAll方法来将字符串数组转换为整数数组。classProgram{staticvoidMain(string[]args){//案例1://使用Array.ConvertAll方法将字符串数组转换为整数数组//情况1:当确定每个数值......