首页 > 其他分享 >端侧芯片(海思、RK、寒武纪、Ascend等)测试检测模型map流程

端侧芯片(海思、RK、寒武纪、Ascend等)测试检测模型map流程

时间:2024-10-30 16:49:57浏览次数:8  
标签:map name img 端侧 Ascend file path line class

1.准备数据集,做好相应尺寸

代码中示例为320,从原始大图变成320*320,加上letterbox和坐标变换

import os
import shutil
from tqdm import tqdm
import cv2

def my_letter_box(img,size=(320,320)):  #
    h,w,c = img.shape
    r = min(size[0]/h,size[1]/w)
    new_h,new_w = int(h*r),int(w*r)
    top = int((size[0]-new_h)/2)
    left = int((size[1]-new_w)/2)
    
    bottom = size[0]-new_h-top
    right = size[1]-new_w-left
    img_resize = cv2.resize(img,(new_w,new_h))
    img = cv2.copyMakeBorder(img_resize,top,bottom,left,right,borderType=cv2.BORDER_CONSTANT,value=(114,114,114))
    return img,r,left,top

SRC_DIR = r"/data/detect/2/"
DST_DIR_IMG = r"/data/Hdetect/images320/"
DST_DIR_LABELS = r"/data/detect/labels320/"

imglist = os.listdir(SRC_DIR)
for file in tqdm(imglist):
    if not file.endswith(".jpg"):
        continue

    name = file.split(".jpg")[0]
   
    if not os.path.exists(SRC_DIR+name+".txt"):
        continue
    #shutil.copy(SRC_DIR+file,DST_DIR_IMG+file)
    img =cv2.imread(SRC_DIR+file)
    h_img,w_img,c= img.shape
    img_letter,rr,left,top= my_letter_box(img)
    cv2.imwrite(DST_DIR_IMG+file,img_letter)
    with open(os.path.join(SRC_DIR, name+".txt"), 'r', encoding="utf-8") as r:
        label_list = r.readlines()

    with open(os.path.join(DST_DIR_LABELS, name+".txt"), 'a+') as ftxt:
        for label in label_list:
           
            label1 = [x for x in label.split(" ") if x != ""]
            class_name =label1[0]
            x = float(label1[1])
            y = float(label1[2])
            w = float(label1[3])
            h = float(label1[4])
            ww = w_img*w
            hh = h_img*h
            xx1 = (x-w/2)*w_img
            yy1 = (y-h/2)*h_img
            xx2 = ww+xx1
            yy2 = hh+yy1
            
            x_letter_1 = (xx1)*rr+left
            y_letter_1 = (yy1)*rr+top
            x_letter_2 = (xx2)*rr+left
            y_letter_2 = (yy2)*rr+top
            #print("x=",x)
            #print("h=",h)
            #ftxt.writelines(class_name + " " + str(xx1) + " " + str(yy1)+" " + str(xx2) + " "+str(yy2) + '\n')
            ftxt.writelines(class_name + " " + str(x_letter_1) + " " + str(y_letter_1)+" " + str(x_letter_2) + " "+str(y_letter_2) + '\n')
    ftxt.close()

2.端侧检测结果形式

3.将图像转换为端侧推理形式(可选)

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# Copyright (C) Shenshu Technologies Co., Ltd. 2022-2022. All rights reserved.
import numpy as np
import os
from PIL import Image

def process(input_path,out_dir):
    try:
        input_image = Image.open(input_path)
        input_image = input_image.resize((320, 320), resample=Image.BILINEAR)
        # hwc
        img = np.array(input_image)
        height = img.shape[0]
        width = img.shape[1]
        h_off = int((height-320)/2)
        w_off = int((width-320)/2)
        crop_img = img[h_off:height-h_off, w_off:width-w_off, :]
        # rgb to bgr
        img = crop_img[:, :, ::-1]
        #img = crop_img[:, :, :]
        shape = img.shape
        img = img.astype("int8")
        img = img.reshape([1] + list(shape))
        result = img.transpose([0, 3, 1, 2])
        output_name = out_dir +input_path.split("/")[-1].rsplit('.', 1)[0] + ".bin"
        result.tofile(output_name)
    except Exception as except_err:
        print(except_err)
        return 1
    else:
        return 0
if __name__ == "__main__":
    count_ok = 0
    count_ng = 0
    images = os.listdir(r'./images320')
    dir = os.path.realpath("./images320")
    out_dir = "./images320_bin/"
    for image_name in images:
        if not (image_name.lower().endswith((".bmp", ".dib", ".jpeg", ".jpg", ".jpe",
        ".png", ".pbm", ".pgm", ".ppm", ".sr", ".ras", ".tiff", ".tif"))):
            continue
        print("start to process image {}....".format(image_name))
        image_path = os.path.join(dir, image_name)
        ret = process(image_path,out_dir)
        if ret == 0:
            print("process image {} successfully".format(image_name))
            count_ok = count_ok + 1
        elif ret == 1:
            print("failed to process image {}".format(image_name))
            count_ng = count_ng + 1
    print("{} images in total, {} images process successfully, {} images process failed"
          .format(count_ok + count_ng, count_ok, count_ng))

4.将端侧的格式转换乘map工程所使用的格式

#####批量处理
from cProfile import label
import shutil
from tkinter.messagebox import NO
import cv2
import os
images_path = "/data//images320"
txt_name = "/data/detect/result_detect.txt"
save_path_labels = "/data/detect/resultdetect_3403"

img_path_last = ""
labels_num = 0
a=0
imgs_count = 0
for line in open(txt_name):
    print(line)
    line_len=len(line.split(" "))
    img_name = line.split(" ")[0].split("/")[-1].replace('.bin','.jpg')
    #img_name = line.split(" ")[0].split("/")[-1]
    img_path = os.path.join(images_path, img_name)
    if line_len==1:
        save_txt = os.path.join(save_path_labels, img_name.replace('.jpg\n', '.txt'))
        txt_file = open(save_txt, 'a')
        labels_num = labels_num+1
       

    else:

        img_name = line.split(" ")[0].split("/")[-1].replace('.bin','.jpg')
        #img_name = line.split(" ")[0].split("/")[-1]
        img_path = os.path.join(images_path, img_name)
       
        shape =(320,320)
        new_shape = (320, 320)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        r = min(r, 1.0)
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        dw /= 2  # divide padding into 2 sides
        dh /= 2

        label = line.split(" ")[1]
        x_min = int(float(line.split(" ")[4]))
        x_max = int(float(line.split(" ")[6]))
        y_min = int(float(line.split(" ")[5]))
        y_max = int(float(line.split(" ")[7].strip('\n')))
        
        #x_min = int(480*float(line.split(" ")[4])/640)
        #x_max = int(480*float(line.split(" ")[6])/640)
        #y_min = int(480*float(line.split(" ")[5])/640)
        #y_max = int(480*float(line.split(" ")[7].strip('\n'))/640)
        
        conf = float(line.split(" ")[3])

        
        # 计算xywh
        x_min_new = max(int((x_min-dw) / new_unpad[0] * shape[1]),0)
        x_max_new = min(int((x_max-dw) / new_unpad[0] * shape[1]),shape[1])
        y_min_new = max(int((y_min-dh) / new_unpad[1] * shape[0]),0)
        y_max_new = min(int((y_max-dh) / new_unpad[1] * shape[0]),shape[0])
        
        save_txt = os.path.join(save_path_labels, img_name.replace('.jpg', '.txt'))
        txt_file = open(save_txt, 'a')
        txt_file.write(str(label) + ' ' + str(conf)+' '+str(x_min_new) + ' ' + str(y_min_new) + ' ' + str(x_max_new) + ' ' + str(
                    y_max_new) + '\n')

       
print(labels_num)
print(a)
print(imgs_count)

5.比较增加没有检测结果的txt文本

import os
import shutil
from tqdm import tqdm
DIR_PATH_GT= r"/data/detect/labels320/"
data_list_gt = os.listdir(DIR_PATH_GT)


DIR_PATH_haisi = r"/data/detect/result_detect/"
data_list_haisi = os.listdir(DIR_PATH_haisi)

for plate_path in tqdm(data_list_gt):
    if not plate_path in data_list_haisi:
        save_txt = os.path.join(r"/data//result_plate", plate_path)
        txt_file = open(save_txt, 'a')

6.map计算脚本

参考:https://github.com/Cartucho/mAP/tree/master

import glob
import json
import os
import shutil
import operator
import sys
import argparse
import math

import numpy as np


MINOVERLAP = 0.5

parser = argparse.ArgumentParser()
parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true")
parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true")
parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true")
parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.")
parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.")
args = parser.parse_args()

'''
    0,0 ------> x (width)
     |
     |  (Left,Top)
     |      *_________
     |      |         |
            |         |
     y      |_________|
  (height)            *
                (Right,Bottom)
'''

if args.ignore is None:
    args.ignore = []

specific_iou_flagged = False
if args.set_class_iou is not None:
    specific_iou_flagged = True

os.chdir(os.path.dirname(os.path.abspath(__file__)))


GT_PATH = r"/data/detect/labels320"

DR_PATH = r"/data/detect/resultdetect"
IMG_PATH = r"/data/detect/images320"

if os.path.exists(IMG_PATH):
    for dirpath, dirnames, files in os.walk(IMG_PATH):
        if not files:
            args.no_animation = True
else:
    args.no_animation = True

show_animation = False
if not args.no_animation:
    try:
        import cv2

        show_animation = False
    except ImportError:
        print("\"opencv-python\" not found, please install to visualize the results.")
        args.no_animation = True
draw_plot = True
if not args.no_plot:
    try:
        import matplotlib.pyplot as plt

        draw_plot = True
    except ImportError:
        print("\"matplotlib\" not found, please install it to get the resulting plots.")
        args.no_plot = True


def log_average_miss_rate(precision, fp_cumsum, num_images):
    """
        log-average miss rate:
            Calculated by averaging miss rates at 9 evenly spaced FPPI points
            between 10e-2 and 10e0, in log-space.
        output:
                lamr | log-average miss rate
                mr | miss rate
                fppi | false positives per image
        references:
            [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
               State of the Art." Pattern Analysis and Machine Intelligence, IEEE
               Transactions on 34.4 (2012): 743 - 761.
    """

    if precision.size == 0:
        lamr = 0
        mr = 1
        fppi = 0
        return lamr, mr, fppi

    fppi = fp_cumsum / float(num_images)
    mr = (1 - precision)

    fppi_tmp = np.insert(fppi, 0, -1.0)
    mr_tmp = np.insert(mr, 0, 1.0)

    ref = np.logspace(-2.0, 0.0, num=9)
    for i, ref_i in enumerate(ref):
        j = np.where(fppi_tmp <= ref_i)[-1][-1]
        ref[i] = mr_tmp[j]

    lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))

    return lamr, mr, fppi


"""
 throw error and exit
"""


def error(msg):
    print(msg)
    sys.exit(0)


"""
 check if the number is a float between 0.0 and 1.0
"""


def is_float_between_0_and_1(value):
    try:
        val = float(value)
        if val > 0.0 and val < 1.0:
            return True
        else:
            return False
    except ValueError:
        return False


"""
 Calculate the AP given the recall and precision array
    1st) We compute a version of the measured precision/recall curve with
         precision monotonically decreasing
    2nd) We compute the AP as the area under this curve by numerical integration.
"""


def voc_ap(rec, prec):
    """
    --- Official matlab code VOC2012---
    mrec=[0 ; rec ; 1];
    mpre=[0 ; prec ; 0];
    for i=numel(mpre)-1:-1:1
            mpre(i)=max(mpre(i),mpre(i+1));
    end
    i=find(mrec(2:end)~=mrec(1:end-1))+1;
    ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    rec.insert(0, 0.0)  # insert 0.0 at begining of list
    rec.append(1.0)  # insert 1.0 at end of list
    mrec = rec[:]
    prec.insert(0, 0.0)  # insert 0.0 at begining of list
    prec.append(0.0)  # insert 0.0 at end of list
    mpre = prec[:]
    """
     This part makes the precision monotonically decreasing
        (goes from the end to the beginning)
        matlab: for i=numel(mpre)-1:-1:1
                    mpre(i)=max(mpre(i),mpre(i+1));
    """
    for i in range(len(mpre) - 2, -1, -1):
        mpre[i] = max(mpre[i], mpre[i + 1])
    """
     This part creates a list of indexes where the recall changes
        matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
    """
    i_list = []
    for i in range(1, len(mrec)):
        if mrec[i] != mrec[i - 1]:
            i_list.append(i)  # if it was matlab would be i + 1
    """
     The Average Precision (AP) is the area under the curve
        (numerical integration)
        matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    ap = 0.0
    for i in i_list:
        ap += ((mrec[i] - mrec[i - 1]) * mpre[i])
    return ap, mrec, mpre


"""
 Convert the lines of a file to a list
"""


def file_lines_to_list(path):
    # open txt file lines to a list
    with open(path) as f:
        content = f.readlines()
    # remove whitespace characters like `\n` at the end of each line
    content = [x.strip() for x in content]
    return content


"""
 Draws text in image
"""


def draw_text_in_image(img, text, pos, color, line_width):
    font = cv2.FONT_HERSHEY_PLAIN
    fontScale = 1
    lineType = 1
    bottomLeftCornerOfText = pos
    cv2.putText(img, text,
                bottomLeftCornerOfText,
                font,
                fontScale,
                color,
                lineType)
    text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
    return img, (line_width + text_width)


"""
 Plot - adjust axes
"""


def adjust_axes(r, t, fig, axes):
    # get text width for re-scaling
    bb = t.get_window_extent(renderer=r)
    text_width_inches = bb.width / fig.dpi
    # get axis width in inches
    current_fig_width = fig.get_figwidth()
    new_fig_width = current_fig_width + text_width_inches
    propotion = new_fig_width / current_fig_width
    # get axis limit
    x_lim = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1] * propotion])


"""
 Draw plot using Matplotlib
"""


def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color,
                   true_p_bar):
    # sort the dictionary by decreasing value, into a list of tuples
    sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
    # unpacking the list of tuples into two lists
    sorted_keys, sorted_values = zip(*sorted_dic_by_value)
    #
    if true_p_bar != "":
        """
         Special case to draw in:
            - green -> TP: True Positives (object detected and matches ground-truth)
            - red -> FP: False Positives (object detected but does not match ground-truth)
            - orange -> FN: False Negatives (object not detected but present in the ground-truth)
        """
        fp_sorted = []
        tp_sorted = []
        for key in sorted_keys:
            fp_sorted.append(dictionary[key] - true_p_bar[key])
            tp_sorted.append(true_p_bar[key])
        plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
        plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive',
                 left=fp_sorted)
        # add legend
        plt.legend(loc='lower right')
        """
         Write number on side of bar
        """
        fig = plt.gcf()  # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            fp_val = fp_sorted[i]
            tp_val = tp_sorted[i]
            fp_str_val = " " + str(fp_val)
            tp_str_val = fp_str_val + " " + str(tp_val)
            # trick to paint multicolor with offset:
            # first paint everything and then repaint the first number
            t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
            plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
            if i == (len(sorted_values) - 1):  # largest bar
                adjust_axes(r, t, fig, axes)
    else:
        plt.barh(range(n_classes), sorted_values, color=plot_color)
        """
         Write number on side of bar
        """
        fig = plt.gcf()  # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            str_val = " " + str(val)  # add a space before
            if val < 1.0:
                str_val = " {0:.2f}".format(val)
            t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
            # re-set axes to show number inside the figure
            if i == (len(sorted_values) - 1):  # largest bar
                adjust_axes(r, t, fig, axes)
    # set window title
    fig.canvas.manager.set_window_title(window_title)
    # write classes in y axis
    tick_font_size = 12
    plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
    """
     Re-scale height accordingly
    """
    init_height = fig.get_figheight()
    # comput the matrix height in points and inches
    dpi = fig.dpi
    height_pt = n_classes * (tick_font_size * 1.4)  # 1.4 (some spacing)
    height_in = height_pt / dpi
    # compute the required figure height
    top_margin = 0.15  # in percentage of the figure height
    bottom_margin = 0.05  # in percentage of the figure height
    figure_height = height_in / (1 - top_margin - bottom_margin)
    # set new height
    if figure_height > init_height:
        fig.set_figheight(figure_height)

    # set plot title
    plt.title(plot_title, fontsize=14)
    # set axis titles
    # plt.xlabel('classes')
    plt.xlabel(x_label, fontsize='large')
    # adjust size of window
    fig.tight_layout()
    # save the plot
    fig.savefig(output_path)
    # show image
    # if to_show:
    #     plt.show()
    # close the plot
    plt.close()


"""
 Create a ".temp_files/" and "results/" directory
"""
miss = 0
TEMP_FILES_PATH = "./tmp_files"
if not os.path.exists(TEMP_FILES_PATH):  # if it doesn't exist already
    os.makedirs(TEMP_FILES_PATH)
results_files_path = "./tmp_result"
if os.path.exists(results_files_path):  # if it exist already
    # reset the results directory
    shutil.rmtree(results_files_path)

os.makedirs(results_files_path)
if draw_plot:
    os.makedirs(os.path.join(results_files_path, "AP"))
    os.makedirs(os.path.join(results_files_path, "F1"))
    os.makedirs(os.path.join(results_files_path, "Recall"))
    os.makedirs(os.path.join(results_files_path, "Precision"))
if show_animation:
    os.makedirs(os.path.join(results_files_path, "images", "detections_one_by_one"))

"""
 ground-truth
     Load each of the ground-truth files into a temporary ".json" file.
     Create a list of all the class names present in the ground-truth (gt_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
if len(ground_truth_files_list) == 0:
    error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}
counter_images_per_class = {}

gt_files = []
for txt_file in ground_truth_files_list:
    # print(txt_file)
    file_id = txt_file.split(".txt", 1)[0]
    file_id = os.path.basename(os.path.normpath(file_id))
    # check if there is a correspondent detection-results file
    temp_path = os.path.join(DR_PATH, (file_id + ".txt"))
    if not os.path.exists(temp_path):
        error_msg = "Error. File not found: {}\n".format(temp_path)
        error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)"
        error(error_msg)
        miss=miss+1
    lines_list = file_lines_to_list(txt_file)
    # create ground-truth dictionary
    bounding_boxes = []
    is_difficult = False
    already_seen_classes = []
    for line in lines_list:
        try:
            if "difficult" in line:
                class_name, left, top, right, bottom, _difficult = line.split()
                is_difficult = True
            else:
                class_name, left, top, right, bottom = line.split()

        except:
            if "difficult" in line:
                line_split = line.split()
                _difficult = line_split[-1]
                bottom = line_split[-2]
                right = line_split[-3]
                top = line_split[-4]
                left = line_split[-5]
                class_name = ""
                for name in line_split[:-5]:
                    class_name += name + " "
                class_name = class_name[:-1]
                is_difficult = True
            else:
                line_split = line.split()
                bottom = line_split[-1]
                right = line_split[-2]
                top = line_split[-3]
                left = line_split[-4]
                class_name = ""
                for name in line_split[:-4]:
                    class_name += name + " "
                class_name = class_name[:-1]
        if class_name in args.ignore:
            continue
        bbox = left + " " + top + " " + right + " " + bottom
        if is_difficult:
            bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False, "difficult": True})
            is_difficult = False
        else:
            bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False})
            #不是难例difficult的时候才计算
            if class_name in gt_counter_per_class:
                gt_counter_per_class[class_name] += 1
            else:
                gt_counter_per_class[class_name] = 1

            if class_name not in already_seen_classes:
                if class_name in counter_images_per_class:
                    counter_images_per_class[class_name] += 1
                else:
                    counter_images_per_class[class_name] = 1
                already_seen_classes.append(class_name)

    with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
        json.dump(bounding_boxes, outfile)

gt_classes = list(gt_counter_per_class.keys())
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)

"""
 Check format of the flag --set-class-iou (if used)
    e.g. check if class exists
"""
if specific_iou_flagged:
    n_args = len(args.set_class_iou)
    error_msg = \
        '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]'
    if n_args % 2 != 0:
        error('Error, missing arguments. Flag usage:' + error_msg)
    # [class_1] [IoU_1] [class_2] [IoU_2]
    # specific_iou_classes = ['class_1', 'class_2']
    specific_iou_classes = args.set_class_iou[::2]  # even
    # iou_list = ['IoU_1', 'IoU_2']
    iou_list = args.set_class_iou[1::2]  # odd
    if len(specific_iou_classes) != len(iou_list):
        error('Error, missing arguments. Flag usage:' + error_msg)
    for tmp_class in specific_iou_classes:
        if tmp_class not in gt_classes:
            error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg)
    for num in iou_list:
        if not is_float_between_0_and_1(num):
            error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg)

"""
 detection-results
     Load each of the detection-results files into a temporary ".json" file.
"""
dr_files_list = glob.glob(DR_PATH + '/*.txt')
dr_files_list.sort()

for class_index, class_name in enumerate(gt_classes):
    bounding_boxes = []
    for txt_file in dr_files_list:
        file_id = txt_file.split(".txt", 1)[0]
        file_id = os.path.basename(os.path.normpath(file_id))
        temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
        if class_index == 0:
            if not os.path.exists(temp_path):
                error_msg = "Error. File not found: {}\n".format(temp_path)
                error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)"
                error(error_msg)
        lines = file_lines_to_list(txt_file)
        for line in lines:
            try:
                tmp_class_name, confidence, left, top, right, bottom = line.split()
            except:
                line_split = line.split()
                bottom = line_split[-1]
                right = line_split[-2]
                top = line_split[-3]
                left = line_split[-4]
                confidence = line_split[-5]
                tmp_class_name = ""
                for name in line_split[:-5]:
                    tmp_class_name += name + " "
                tmp_class_name = tmp_class_name[:-1]

            if tmp_class_name == class_name:
                bbox = left + " " + top + " " + right + " " + bottom
                bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox})

    bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True)
    with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
        json.dump(bounding_boxes, outfile)

"""
 Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
lamr_dictionary = {}

CONF = 0.1
with open(results_files_path + "/results.txt", 'w') as results_file:
    results_file.write("# AP and precision/recall per class\n")
    count_true_positives = {}
    i=0
    for class_index, class_name in enumerate(gt_classes):
        
        count_true_positives[class_name] = 0
        """
         Load detection-results of that class
        """
        dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
        dr_data = json.load(open(dr_file))
        """
         Assign detection-results to ground-truth objects
        """
        nd = len(dr_data)#1380
        tp = [0] * nd
        fp = [0] * nd
        score = [0] * nd
        score05_idx = 0
        for idx, detection in enumerate(dr_data):
            file_id = detection["file_id"]
            score[idx] = float(detection["confidence"])
            if score[idx] > CONF:
                score05_idx = idx
                #print(score05_idx)
                #print(score[idx])
            if show_animation:
                ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
                if len(ground_truth_img) == 0:
                    error("Error. Image not found with id: " + file_id)
                elif len(ground_truth_img) > 1:
                    error("Error. Multiple image with id: " + file_id)
                else:
                    img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
                    img_cumulative_path = results_files_path + "/images/" + ground_truth_img[0]
                    if os.path.isfile(img_cumulative_path):
                        img_cumulative = cv2.imread(img_cumulative_path)
                    else:
                        img_cumulative = img.copy()
                    bottom_border = 60
                    BLACK = [0, 0, 0]
                    img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)

            gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
            gt_files.append(gt_file)
            ground_truth_data = json.load(open(gt_file))
            ovmax = -1
            gt_match = -1
            bb = [float(x) for x in detection["bbox"].split()]
            for obj in ground_truth_data:
                if obj["class_name"] == class_name:
                    bbgt = [float(x) for x in obj["bbox"].split()]
                    bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])]
                    iw = bi[2] - bi[0] + 1
                    ih = bi[3] - bi[1] + 1
                    if iw > 0 and ih > 0:
                        # compute overlap (IoU) = area of intersection / area of union
                        ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
                                                                          + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
                        ov = iw * ih / ua
                        if ov > ovmax:
                            ovmax = ov
                            gt_match = obj

            if show_animation:
                status = "NO MATCH FOUND!"
            min_overlap = MINOVERLAP
            if specific_iou_flagged:
                if class_name in specific_iou_classes:
                    index = specific_iou_classes.index(class_name)
                    min_overlap = float(iou_list[index])
            #主要是改这里
            if ovmax >= min_overlap:
                #if gt_match.difficult
                if "difficult" not in gt_match:
                    if not bool(gt_match["used"]):
                        tp[idx] = 1
                        gt_match["used"] = True
                        count_true_positives[class_name] += 1
                        with open(gt_file, 'w') as f:
                            f.write(json.dumps(ground_truth_data))
                        if show_animation:
                            status = "MATCH!"
                    else:
                        fp[idx] = 1
                        if show_animation:
                            status = "REPEATED MATCH!"
            else:
                fp[idx] = 1
                if ovmax > 0:
                    status = "INSUFFICIENT OVERLAP"

            """
             Draw image to show animation
            """
            if show_animation:
                height, widht = img.shape[:2]
                # colors (OpenCV works with BGR)
                white = (255, 255, 255)
                light_blue = (255, 200, 100)
                green = (0, 255, 0)
                light_red = (30, 30, 255)
                # 1st line
                margin = 10
                v_pos = int(height - margin - (bottom_border / 2.0))
                text = "Image: " + ground_truth_img[0] + " "
                img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
                img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
                if ovmax != -1:
                    color = light_red#浅红色为重叠小于0.5的
                    if status == "INSUFFICIENT OVERLAP":
                        text = "IoU: {0:.2f}% ".format(ovmax * 100) + "< {0:.2f}% ".format(min_overlap * 100)
                    else:
                        text = "IoU: {0:.2f}% ".format(ovmax * 100) + ">= {0:.2f}% ".format(min_overlap * 100)
                        color = green#绿色为重叠面积满足的
                    img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
                # 2nd line
                v_pos += int(bottom_border / 2.0)
                rank_pos = str(idx + 1)  # rank position (idx starts at 0)
                text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(
                    float(detection["confidence"]) * 100)
                img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                color = light_red
                if status == "MATCH!":
                    color = green
                text = "Result: " + status + " "
                img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)

                font = cv2.FONT_HERSHEY_SIMPLEX
                if ovmax > 0:  # if there is intersections between the bounding-boxes
                    bbgt = [int(round(float(x))) for x in gt_match["bbox"].split()]
                    cv2.rectangle(img, (bbgt[0], bbgt[1]), (bbgt[2], bbgt[3]), light_blue, 2)
                    cv2.rectangle(img_cumulative, (bbgt[0], bbgt[1]), (bbgt[2], bbgt[3]), light_blue, 2)
                    cv2.putText(img_cumulative, class_name, (bbgt[0], bbgt[1] - 5), font, 0.6, light_blue, 1,
                                cv2.LINE_AA)
                bb = [int(i) for i in bb]
                cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), color, 2)
                cv2.rectangle(img_cumulative, (bb[0], bb[1]), (bb[2], bb[3]), color, 2)
                cv2.putText(img_cumulative, class_name, (bb[0], bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
                # show image
                # cv2.imshow("Animation", img)
                cv2.waitKey(20)  # show for 20 ms
                # save image to results
                output_img_path = results_files_path + "/images/detections_one_by_one/" + class_name + "_detection" + str(
                    idx) + ".jpg"
                cv2.imwrite(output_img_path, img)
                # save the image with all the objects drawn to it
                cv2.imwrite(img_cumulative_path, img_cumulative)

        cumsum = 0
        for idx, val in enumerate(fp):
            fp[idx] += cumsum
            cumsum += val

        cumsum = 0
        for idx, val in enumerate(tp):
            tp[idx] += cumsum
            cumsum += val

        rec = tp[:]
        for idx, val in enumerate(tp):
            rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)

        prec = tp[:]
        for idx, val in enumerate(tp):
            prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)

        ap, mrec, mprec = voc_ap(rec[:], prec[:])
        F1 = np.array(rec) * np.array(prec) * 2 / np.where((np.array(prec) + np.array(rec)) == 0, 1,
                                                           (np.array(prec) + np.array(rec)))

        sum_AP += ap
        #text = "{0:.2f}%".format(ap * 100) + " = " + class_name + " AP "  # class_name + " AP = {0:.2f}%".format(ap*100)
        text = class_name +"="+"{0:.2f}%".format(ap * 100) +" "+" AP "
        if len(prec) > 0:
            #F1_text = "{0:.2f}".format(F1[score05_idx]) + " = " + class_name + " F1 "
            F1_text = class_name + "=" + "{0:.2f}%".format(F1[score05_idx] * 100) + " " + "  F1 "
            #Recall_text = "{0:.2f}%".format(rec[score05_idx] * 100) + " = " + class_name + " Recall "
            Recall_text = class_name + "=" + "{0:.2f}%".format(rec[score05_idx] * 100) + " " + "  Recall "
            #Precision_text = "{0:.2f}%".format(prec[score05_idx] * 100) + " = " + class_name + " Precision "
            Precision_text = class_name +"="+"{0:.2f}%".format(prec[score05_idx] * 100) + " "+"  Precision "
        else:
            F1_text = "0.00" + " = " + class_name + " F1 "
            Recall_text = "0.00%" + " = " + class_name + " Recall "
            Precision_text = "0.00%" + " = " + class_name + " Precision "

        rounded_prec = ['%.2f' % elem for elem in prec]
        rounded_rec = ['%.2f' % elem for elem in rec]
        results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
        if not args.quiet:
            if len(prec) > 0:
                print(text + "\t||\tscore_threhold="+str(CONF)+" : " + "F1=" + "{0:.2f}".format(F1[score05_idx]) \
                      + " ; Recall=" + "{0:.2f}%".format(rec[score05_idx] * 100) + " ; Precision=" + "{0:.2f}%".format(
                    prec[score05_idx] * 100))
            else:
                print(text + "\t||\tscore_threhold=0.1 : F1=0.00% ; Recall=0.00% ; Precision=0.00%")
        ap_dictionary[class_name] = ap

        n_images = counter_images_per_class[class_name]
        lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
        lamr_dictionary[class_name] = lamr

        """
         Draw plot
        """
        if draw_plot:
            
            fig = plt.gcf()
            # fig.canvas.manager.set_window_title('oo ' + class_name)
            plt.plot(rec, prec, '-o', color='orangered')
            # area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
            # area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
            # plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
            plt.title('class: ' + text)
            plt.xlabel('Recall')
            plt.ylabel('Precision')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/AP/" + class_name + ".png")
            plt.cla()

            plt.plot(score, F1, "-", color='orangered')
            plt.title('class: ' + F1_text + "\n"+"score_threhold="+str(CONF))
            #plt.title('class: ' + F1_text + "\nscore_threhold=0.35")
            plt.xlabel('Score_Threhold')
            plt.ylabel('F1')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/F1/" + class_name + ".png")
            plt.cla()

            plt.plot(score, rec, "-H", color='gold')
            plt.title('class: ' + Recall_text + "\n"+"score_threhold="+str(CONF))
            #plt.title('class: ' + Recall_text + "\nscore_threhold=0.35")
            plt.xlabel('Score_Threhold')
            plt.ylabel('Recall')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/Recall/" + class_name + ".png")
            plt.cla()

            plt.plot(score, prec, "-s", color='palevioletred')
            plt.title('class: ' + Precision_text + "\n"+"score_threhold="+str(CONF))
            #plt.title('class: ' + Precision_text + "\nscore_threhold=0.35")
            plt.xlabel('Score_Threhold')
            plt.ylabel('Precision')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/Precision/" + class_name + ".png")
            plt.cla()

    if show_animation:
        cv2.destroyAllWindows()

    results_file.write("\n# mAP of all classes\n")
    mAP = sum_AP / n_classes
    text = "mAP = {0:.2f}%".format(mAP * 100)
    results_file.write(text + "\n")
    print(text)

"""
 Draw false negatives
"""
if show_animation:
    pink = (203,192,255)
    for tmp_file in gt_files:
        ground_truth_data = json.load(open(tmp_file))
        #print(ground_truth_data)
        # get name of corresponding image
        start = TEMP_FILES_PATH + '/'
        img_id = tmp_file[tmp_file.find(start)+len(start):tmp_file.rfind('_ground_truth.json')]
        img_cumulative_path = results_files_path + "/images/" + img_id + ".jpg"
        img = cv2.imread(img_cumulative_path)
        if img is None:
            img_path = IMG_PATH + '/' + img_id + ".jpg"
            img = cv2.imread(img_path)
        # draw false negatives
        for obj in ground_truth_data:
            if not obj['used']:
                bbgt = [ int(round(float(x))) for x in obj["bbox"].split() ]
                cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),pink,2)
        cv2.imwrite(img_cumulative_path, img)

# remove the temp_files directory
shutil.rmtree(TEMP_FILES_PATH)

"""
 Count total of detection-results
"""
# iterate through all the files
det_counter_per_class = {}
for txt_file in dr_files_list:
    # get lines to list
    lines_list = file_lines_to_list(txt_file)
    for line in lines_list:
        class_name = line.split()[0]
        # check if class is in the ignore list, if yes skip
        if class_name in args.ignore:
            continue
        # count that object
        if class_name in det_counter_per_class:
            det_counter_per_class[class_name] += 1
        else:
            # if class didn't exist yet
            det_counter_per_class[class_name] = 1
# print(det_counter_per_class)
dr_classes = list(det_counter_per_class.keys())

"""
 Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
    window_title = "ground-truth-info"
    plot_title = "ground-truth\n"
    plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
    x_label = "Number of objects per class"
    output_path = results_files_path + "/ground-truth-info.png"
    to_show = False
    plot_color = 'forestgreen'
    draw_plot_func(
        gt_counter_per_class,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        '',
    )

"""
 Write number of ground-truth objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
    results_file.write("\n# Number of ground-truth objects per class\n")
    for class_name in sorted(gt_counter_per_class):
        results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")

"""
 Finish counting true positives
"""
for class_name in dr_classes:
    # if class exists in detection-result but not in ground-truth then there are no true positives in that class
    if class_name not in gt_classes:
        count_true_positives[class_name] = 0
# print(count_true_positives)

"""
 Plot the total number of occurences of each class in the "detection-results" folder
"""
if draw_plot:
    window_title = "detection-results-info"
    # Plot title
    plot_title = "detection-results\n"
    plot_title += "(" + str(len(dr_files_list)) + " files and "
    count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
    plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
    # end Plot title
    x_label = "Number of objects per class"
    output_path = results_files_path + "/detection-results-info.png"
    to_show = False
    plot_color = 'forestgreen'
    true_p_bar = count_true_positives
    draw_plot_func(
        det_counter_per_class,
        len(det_counter_per_class),
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        true_p_bar
    )

"""
 Write number of detected objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
    results_file.write("\n# Number of detected objects per class\n")
    for class_name in sorted(dr_classes):
        n_det = det_counter_per_class[class_name]
        text = class_name + ": " + str(n_det)
        text += " (tp:" + str(count_true_positives[class_name]) + ""
        text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
        results_file.write(text)

"""
 Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
"""
if draw_plot:
    window_title = "lamr"
    plot_title = "log-average miss rate"
    x_label = "log-average miss rate"
    output_path = results_files_path + "/lamr.png"
    to_show = False
    plot_color = 'royalblue'
    draw_plot_func(
        lamr_dictionary,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        ""
    )

"""
 Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
    window_title = "mAP"
    plot_title = "mAP = {0:.2f}%".format(mAP * 100)
    x_label = "Average Precision"
    output_path = results_files_path + "/mAP.png"
    to_show = False
    plot_color = 'royalblue'
    draw_plot_func(
        ap_dictionary,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        ""
    )

标签:map,name,img,端侧,Ascend,file,path,line,class
From: https://blog.csdn.net/u012374012/article/details/143357511

相关文章

  • jmap 内存分析工具学习
    内存分析工具jmap学习下面以java8为例,java9之后jmap的命令有一些变化。一.jps找到当前java程序的进程id查看java堆信息jmap-heap-pid[对应的进程id]查看java堆中对象,|more是不要一下子打印太多对象,按回车就能接着看剩下的对象jmap-histo:live[进程id]|more......
  • redis详细教程(3.ZSet,Bitmap,HyperLogLog)
    ZSetRedis的ZSet(有序集合)是一种特殊的数据类型,它允许存储一系列不重复的字符串元素,并为每个元素关联一个分数(score)。这个分数用于对集合中的元素进行排序。ZSet的特点是:唯一性:集合中的每个元素都是唯一的。可排序性:元素可以根据分数进行排序。内部实现:ZSet的内部实现......
  • 从 GC 到 WeakMap、WeakSet
    一、内存泄漏1.1简介内存泄漏:指计算机科学中的一种资源泄漏,主要是因为计算机程序内存管理疏忽或错误造成程序未能释放已经不再使用的内存,因而失去对一段已分配内存空间的控制,程序将继续占用已不再使用的内存空间,或是存储器所存储的对象,无法通过执......
  • PbootCMS自带的sitemap.xml增加tag标签链接
    修改SitemapModel.php文件:打开 /apps/home/model/SitemapModel.php 文件在78行后面增加以下代码:publicfunctiongetSortTags($scode){$join=array(array('ay_content_sortb','a.scode=b.scode','LEFT'),array('a......
  • 数据结构————map,set详解
    今天带来map和set的详解,保证大家分清楚一,概念map和set是一种专门用来搜索的容器或数据结构map能存储两个数据类型,我们称之为<key-value>模型set只能存储一个数据类型,我们称之为纯<key>模型它们的效率都非常非常高,我们来一个一个了解。二,详解map1,map的说明map是一个接......
  • Java面试题之HashMap
    前言本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!说说Hashtable与HashMap的区别?HashMap中的key我们可以使用任何类作为key吗?HashMap的长度为什么是2的N次方呢?HashMap与ConcurrentHashMap的异同?红黑树有哪几个特征?似乎有点模糊了,那就大概看一下面试......
  • 解决:swagger2 Could not resolve reference because of: Could not resolve pointer:
    问题:使用swagger时页面出现报警信息mavaen依赖版本:2.8.0<!--swagger2--><dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.8.0<......
  • Java常见面试真题之中级进阶(HashMap篇)
    前言本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!说说Hashtable与HashMap的区别?HashMap中的key我们可以使用任何类作为key吗?HashMap的长度为什么是2的N次方呢?HashMap与ConcurrentHashMap的异同?红黑树有哪几个特征?似乎有点模糊了,那就大概看一下面试题吧。......
  • Markmap,用Markdown语法轻松创建思维导图,AI助力提升工作效率
    Markmap介绍首先,什么是Markmap?Markmap是一个开源项目,旨在用Markdown语法来制作思维导图。它的目的是:允许你使用简单的Markdown语法来快速编写思维导图。值得一提的是,中文Markmap在此基础上进一步引入了AI技术,实现了自动生成思维导图的功能。用户只需输入内容,AI就会自......
  • 从源码解读为什么使用ConcurrentHashMap,而不使用Hashtable与HashMap
    目录1问题2答案2.1 锁机制不同:ConcurrentHashMap提升并发性能2.2迭代的安全性2.3更好的扩展性3带着答案理解源码3.1 HashMap的putVal()方法:3.2 HashTable的put()方法3.3  ConcurrentHashMap的putVal()方法4总结 1问题我们都知道Hashmap线程不安全,......