首页 > 其他分享 >清华:细粒度强化学习优化LLM工具使用

清华:细粒度强化学习优化LLM工具使用

时间:2024-10-29 10:20:07浏览次数:5  
标签:清华 细粒度 学习 奖励 LLM 工具 优化

在这里插入图片描述

标签:清华,细粒度,学习,奖励,LLM,工具,优化
From: https://blog.csdn.net/weixin_46739757/article/details/143203014

相关文章

  • 人大:优化工具文档提升LLM工具使用
    ......
  • 全面解释人工智能LLM模型的真实工作原理(完结)
    前一篇:《全面解释人工智能LLM模型的真实工作原理(三)》序言:本节作为整篇的收官之作,自然少不了与当今最先进的AI模型相呼应。这里我们将简单介绍全球首家推动人工智能生成人类语言的公司——OpenAI的GPT模型的基本原理。如果你也希望为人类的发展做出贡献,并投身于AI行业,这无疑是一......
  • 数据库技术解读之细粒度资源管控
    ​背景对数据库集群内资源管控与资源隔离一直是企业客户长久以来的诉求。华为云GaussDB作为一款企业级分布式数据库,一直致力于满足企业对大型数据库集群的管理需要。数据库可以管理的资源有计算资源与存储资源,计算资源包括CPU、内存、IO与网络,存储资源包括数据存储空间、日志存......
  • 大模型LLM:为什么简单的乘法ChatGPT会算错?
    首先“心算”三位整数乘法不管对人类还是对模型来说都不简单的。如果使用CoT的方式就类似于“笔算”,如果使用编程的方式就类似于人拿着计算器算。我将问题更精确一点地表述为“模型如何在心算多位整数乘法上接近或超过人的水平?”这个问题困扰了我很久,简单乘法是推理能力的......
  • 全面解释人工智能LLM模型的真实工作原理(三)
    前一篇:《全面解释人工智能LLM模型的真实工作原理(二)》序言:前面两节中,我们介绍了大语言模型的设计图和实现了一个能够生成自然语言的神经网络。这正是现代先进人工智能语言模型的雏形。不过,目前市面上的语言模型远比我们设计的这个复杂得多。那么,它们到底复杂在什么地方?本节将为你......
  • 使用Spring AI和LLM生成Java测试代码
    背景     AIDocumentLibraryChat项目已扩展至生成测试代码(Java代码已通过测试)。该项目可为公开的Github项目生成测试代码。只需提供要测试的类的网址,该类就会被加载、分析导入,项目中的依赖类也会被加载。这样,LLM就有机会在为测试生成模拟时考虑导入的源类。可以提供te......
  • 全面解释人工智能LLM模型的真实工作原理(二)
    前一篇:《全面解释人工智能LLM模型的真实工作原理(一)》序言:在上一篇文章中,我们从原理上构建了一个识别“叶子”和“花朵”的神经网络,并详细讲解了它的工作过程。这包括对输入数字逐个与权重相乘后求和,加上偏置值,最后通过非线性处理和统计分布计算来得出输出。这些操作使用了简......
  • 全面解释人工智能LLM模型的真实工作原理(二)
    前一篇:《全面解释人工智能LLM模型的真实工作原理(一)》序言:在上一篇文章中,我们从原理上构建了一个识别“叶子”和“花朵”的神经网络,并详细讲解了它的工作过程。这包括对输入数字逐个与权重相乘后求和,加上偏置值,最后通过非线性处理和统计分布计算来得出输出。这些操作使用了简单的......
  • LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
    近年来,大型语言模型(LargeLanguageModels,LLMs)在自然语言处理领域取得了显著进展。受此启发,研究人员开始探索将LLMs应用于时间序列预测任务的可能性。由于时间序列数据与文本数据在特征上存在显著差异,直接将LLMs应用于时间序列预测仍面临诸多挑战。为了解决这一问题,Jin等......
  • 天工AI:统一像素级视觉LLM发布
    ......