首页 > 其他分享 >监控工具 - 快速创建Prometheus-Grafana-Alertmanager监控系统

监控工具 - 快速创建Prometheus-Grafana-Alertmanager监控系统

时间:2024-10-21 23:20:29浏览次数:7  
标签:node Alertmanager -- Grafana sample prometheus 监控 k8s root

Prometheus

相关命令

docker network create monitoring

mkdir -p /etc/prometheus
vim /etc/prometheus/prometheus.yml

docker run -itd --name prometheus \
--net=monitoring \
-p 9090:9090 \
--restart always \
-v /etc/prometheus:/etc/prometheus \
-v prometheus-data:/prometheus \
prom/prometheus:v2.53.2

配置文件
/etc/prometheus/prometheus.yml

global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
    # - alertmanager:9093
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]

运行实例记录

[root@k8s-sample ~]# docker network create monitoring
d622c0cbdd342bb819aa896c057782ac44ec359bcd3b7f9b30bd1cd0064dfc1d
[root@k8s-sample ~]# 
[root@k8s-sample ~]# mkdir -p /etc/prometheus
[root@k8s-sample ~]# vim /etc/prometheus/prometheus.yml
[root@k8s-sample ~]# cat /etc/prometheus/prometheus.yml
global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
    # - alertmanager:9093
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker run -itd --name prometheus --net=monitoring -p 9090:9090 --restart always -v /etc/prometheus:/etc/prometheus -v prometheus-data:/prometheus prom/prometheus:v2.53.2
060917136c37c3e5f7c12866e25ab828aecfdc031e1bebb92c153c58e24a9051
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker ps 
CONTAINER ID   IMAGE                     COMMAND                  CREATED         STATUS         PORTS                                       NAMES
060917136c37   prom/prometheus:v2.53.2   "/bin/prometheus --c…"   6 seconds ago   Up 5 seconds   0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@k8s-sample ~]#

可直接登录“http://:9090”页面


Grafana

相关命令

docker run -d --name=grafana \
--net=monitoring \
-p 3000:3000 \
--restart always \
-v grafana-data:/var/lib/grafana \
grafana/grafana

运行实例记录

[root@k8s-sample ~]# docker run -d --name=grafana \
--net=monitoring \
-p 3000:3000 \
--restart always \
-v grafana-data:/var/lib/grafana \
grafana/grafana
3e2ed40167581e3c0d836a9b6155a8b0bc37012a7b8e67baa45b2fdd474b0865
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker ps
CONTAINER ID   IMAGE                     COMMAND                  CREATED         STATUS         PORTS                                       NAMES
3e2ed4016758   grafana/grafana           "/run.sh"                5 seconds ago   Up 5 seconds   0.0.0.0:3000->3000/tcp, :::3000->3000/tcp   grafana
b0e8d55c2f2c   prom/prometheus:v2.53.2   "/bin/prometheus --c…"   6 minutes ago   Up 6 minutes   0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@k8s-sample ~]# 
[root@k8s-sample ~]# 

登录“http://:3000”页面,默认账号admin/admin,登录后更改密码。
添加数据源:Home --> Connections --> Data sources --> Add data source --> prometheus --> Connection 填写 http://:9090 --> Save & test


Exporter

Node Exporter

部署 Node Exporter
部署完成后,浏览器访问 http://:9100/metrics 页面可以查看到采集的指标数据。

[root@k8s-sample ~]# tar -xzvf node_exporter-1.8.2.linux-amd64.tar.gz -C /opt
node_exporter-1.8.2.linux-amd64/
node_exporter-1.8.2.linux-amd64/NOTICE
node_exporter-1.8.2.linux-amd64/node_exporter
node_exporter-1.8.2.linux-amd64/LICENSE
[root@k8s-sample ~]# 
[root@k8s-sample ~]# cd /opt/
[root@k8s-sample opt]# ln -sv node_exporter-1.8.2.linux-amd64 node_exporter
'node_exporter' -> 'node_exporter-1.8.2.linux-amd64'
[root@k8s-sample opt]# 
[root@k8s-sample opt]# useradd prometheus && echo "prometheus:prometheus"|chpasswd && chage -M 99999 prometheus
[root@k8s-sample opt]# 
[root@k8s-sample opt]# chown -R prometheus:prometheus /opt/node_exporter-1.8.2.linux-amd64/
[root@k8s-sample opt]# 
[root@k8s-sample opt]# ll /opt |grep node_exporter
lrwxrwxrwx  1 root       root        31 Oct 18 22:34 node_exporter -> node_exporter-1.8.2.linux-amd64
drwxr-xr-x  2 prometheus prometheus  56 Jul 14 19:58 node_exporter-1.8.2.linux-amd64
[root@k8s-sample opt]# 
[root@k8s-sample opt]# cd
[root@k8s-sample ~]# vim /usr/lib/systemd/system/node_exporter.service
[root@k8s-sample ~]# cat /usr/lib/systemd/system/node_exporter.service
[Unit]
Description=node_exporter
Documentation=https://prometheus.io/
After=network-online.target
[Service]
Type=simple
User=prometheus
Group=prometheus
ExecStart=/opt/node_exporter/node_exporter
Restart=on-failure
[Install]
WantedBy=multi-user.target
[root@k8s-sample ~]# 
[root@k8s-sample ~]# systemctl daemon-reload
[root@k8s-sample ~]# systemctl enable node_exporter.service
Created symlink /etc/systemd/system/multi-user.target.wants/node_exporter.service → /usr/lib/systemd/system/node_exporter.service.
[root@k8s-sample ~]# systemctl start node_exporter.service
[root@k8s-sample ~]# systemctl status node_exporter.service
● node_exporter.service - node_exporter
     Loaded: loaded (/usr/lib/systemd/system/node_exporter.service; enabled; preset: disable>
     Active: active (running) since Fri 2024-10-18 22:36:19 CST; 7s ago
       Docs: https://prometheus.io/
   Main PID: 8177 (node_exporter)
      Tasks: 5 (limit: 48820)
     Memory: 4.7M
        CPU: 9ms
     CGroup: /system.slice/node_exporter.service
             └─8177 /opt/node_exporter/node_exporter

Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.348Z caller=node_expo>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.349Z caller=tls_confi>
Oct 18 22:36:19 k8s-sample node_exporter[8177]: ts=2024-10-18T14:36:19.349Z caller=tls_confi>
lines 1-21/21 (END)
[root@k8s-sample ~]# 

Prometheus添加监控指标
添加完成后,可以在Web UI页面导航栏的 Status 中选择 Targets 查看监控目标。

[root@k8s-sample ~]# vim /etc/prometheus/prometheus.yml 
[root@k8s-sample ~]# cat /etc/prometheus/prometheus.yml 
global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
    # - alertmanager:9093
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  - job_name: "linux-server"
    metrics_path: "/metrics" # 指标接口路径,默认/metrics
    scheme: http # 连接协议,默认http
    static_configs:
      - targets: ["192.168.16.170:9100"]
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker exec -it prometheus kill -HUP 1
[root@k8s-sample ~]# 

Grafana 导入仪表盘
Grafana页面 --> 左侧菜单栏Dashboards --> New --> New dashboard --> Import a dashboard --> 输入仪表盘ID 12633
--> Load加载 --> 设置仪表盘名称和数据源 --> Import完成导入 --> Dashboards看到对应的仪表盘页面。

cAdvisor Exporter

[root@k8s-sample ~]# docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/cadvisor/cadvisor-amd64:v0.49.1
v0.49.1: Pulling from ddn-k8s/gcr.io/cadvisor/cadvisor-amd64
619be1103602: Pull complete 
3b8469b194b8: Pull complete 
6361eeb1639c: Pull complete 
4f4fb700ef54: Pull complete 
902eccca70f3: Pull complete 
Digest: sha256:00ff3424f13db8d6d62778253e26241c45a8d53343ee09944a474bf88d3511ac
Status: Downloaded newer image for swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/cadvisor/cadvisor-amd64:v0.49.1
swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/cadvisor/cadvisor-amd64:v0.49.1
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/cadvisor/cadvisor-amd64:v0.49.1  gcr.io/cadvisor/cadvisor-amd64:v0.49.1
[root@k8s-sample ~]# docker rmi swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/cadvisor/cadvisor-amd64:v0.49.1
[root@k8s-sample ~]# docker images |grep cadvisor
gcr.io/cadvisor/cadvisor-amd64   v0.49.1   c02cf39d3dba   7 months ago    80.8MB
[root@k8s-sample ~]# 

[root@k8s-sample ~]# docker images |grep cadvisor
gcr.io/cadvisor/cadvisor-amd64   v0.49.1   c02cf39d3dba   7 months ago    80.8MB
[root@k8s-sample ~]# docker run -d --name=cadvisor \
--publish=8080:8080 \
--restart always \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:ro \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--volume=/dev/disk/:/dev/disk:ro \
--detach=true \
--privileged \
--device=/dev/kmsg \
gcr.io/cadvisor/cadvisor-amd64:v0.49.1
56e4af8073bc960dfeffadb9e962c4107ae482d88cb3e29a651ba4c443962ba0
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker ps 
CONTAINER ID   IMAGE                                    COMMAND                  CREATED         STATUS                            PORTS                                       NAMES
56e4af8073bc   gcr.io/cadvisor/cadvisor-amd64:v0.49.1   "/usr/bin/cadvisor -…"   7 seconds ago   Up 5 seconds (health: starting)   0.0.0.0:8080->8080/tcp, :::8080->8080/tcp   cadvisor
279f91ec6f9f   prom/alertmanager                        "/bin/alertmanager -…"   47 hours ago    Up 22 minutes                     0.0.0.0:9093->9093/tcp, :::9093->9093/tcp   alertmanager
3e2ed4016758   grafana/grafana                          "/run.sh"                2 days ago      Up 22 minutes                     0.0.0.0:3000->3000/tcp, :::3000->3000/tcp   grafana
b0e8d55c2f2c   prom/prometheus:v2.53.2                  "/bin/prometheus --c…"   2 days ago      Up 22 minutes                     0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@k8s-sample ~]# 

直接访问如下页面

  • http://:8080 查看cadvisor的相关信息
  • http://:8080/metrics 查看采集的指标数据

在Prometheus添加监控指标
添加完成后,可以在Web UI页面导航栏的 Status 中选择 Targets 查看监控目标。

[root@k8s-sample ~]# vim /etc/prometheus/prometheus.yml
[root@k8s-sample ~]# cat /etc/prometheus/prometheus.yml
global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
        - 192.168.16.170:9093
rule_files:
  - "./rules/linux-server.yml"
  - "./rules/general.yml"
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  - job_name: "linux-server"
    metrics_path: "/metrics" # 指标接口路径,默认/metrics
    scheme: http # 连接协议,默认http
    static_configs:
      - targets: ["192.168.16.170:9100"]
  - job_name: "docker-server"
    static_configs:
      - targets: ["192.168.16.170:8080"]
[root@k8s-sample ~]#  
[root@k8s-sample ~]# docker exec -it prometheus kill -HUP 1
[root@k8s-sample ~]# 

Grafana导入仪表盘
Grafana页面 --> 左侧菜单栏Dashboards --> New --> New dashboard --> Import a dashboard --> 输入仪表盘ID 14282
--> Load加载 --> 设置仪表盘名称和数据源 --> Import完成导入 --> Dashboards看到对应的仪表盘页面。


Alertmanager

相关命令

mkdir -p /etc/alertmanager

vim /etc/alertmanager/alertmanager.yml

docker run -d --name=alertmanager \
--net=monitoring \
-v /etc/alertmanager:/etc/alertmanager \
-p 9093:9093 \
--restart always \
prom/alertmanager

编写配置文件
/etc/alertmanager/alertmanager.yml

global:
  resolve_timeout: 5m
  smtp_smarthost: 'smtp.163.com:25'
  smtp_from: '[email protected]'
  smtp_auth_username: '[email protected]'
  smtp_auth_password: 'XXXXXX'
  smtp_require_tls: false
route:
  receiver: 'default-receiver'
  group_by: [alertname]
  group_wait: 1m
  group_interval: 5m
  repeat_interval: 30m
receivers:
- name: 'default-receiver'
  email_configs:
  - to: '[email protected]'
    send_resolved: true
[root@k8s-sample ~]# vim /etc/alertmanager/alertmanager.yml
[root@k8s-sample ~]# cat /etc/alertmanager/alertmanager.yml
global:
  resolve_timeout: 5m
  smtp_smarthost: 'smtp.163.com:25'
  smtp_from: '[email protected]'
  smtp_auth_username: '[email protected]'
  smtp_auth_password: 'XXXXXX'
  smtp_require_tls: false
route:
  receiver: 'default-receiver'
  group_by: [alertname]
  group_wait: 1m
  group_interval: 5m
  repeat_interval: 30m
receivers:
- name: 'default-receiver'
  email_configs:
  - to: '[email protected]'
    send_resolved: true
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker run -d --name=alertmanager --net=monitoring -v /etc/alertmanager:/etc/alertmanager -p 9093:9093 --restart always prom/alertmanager
279f91ec6f9fe6f154e99b1d110e754361ad7f2c20066967b290990d72b395a0
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker ps
CONTAINER ID   IMAGE                     COMMAND                  CREATED         STATUS         PORTS                                       NAMES
279f91ec6f9f   prom/alertmanager         "/bin/alertmanager -…"   5 seconds ago   Up 4 seconds   0.0.0.0:9093->9093/tcp, :::9093->9093/tcp   alertmanager
3e2ed4016758   grafana/grafana           "/run.sh"                2 hours ago     Up 2 hours     0.0.0.0:3000->3000/tcp, :::3000->3000/tcp   grafana
b0e8d55c2f2c   prom/prometheus:v2.53.2   "/bin/prometheus --c…"   2 hours ago     Up 2 hours     0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@k8s-sample ~]# 

更新Prometheus配置文件,指定alertmanager的访问地址

[root@k8s-sample ~]# vim /etc/prometheus/prometheus.yml 
[root@k8s-sample ~]# cat /etc/prometheus/prometheus.yml 
global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
        - 192.168.16.170:9093
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  - job_name: "linux-server"
    metrics_path: "/metrics" # 指标接口路径,默认/metrics
    scheme: http # 连接协议,默认http
    static_configs:
      - targets: ["192.168.16.170:9100"]
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker exec -it prometheus kill -HUP 1
[root@k8s-sample ~]# 

可以直接登录“http://:9093”页面


Alertmanager 告警规则

相关命令

mkdir -p /etc/prometheus/rules

vim /etc/prometheus/rules/linux-server.yml
vim /etc/prometheus/rules/general.yml

vim /etc/prometheus/prometheus.yml
docker exec -it prometheus kill -HUP 1

创建告警规则文件(主机资源使用率)

groups: # 告警规则组
- name: Linux-Server  # 告警规则组名称
  rules: # 规则
  - alert: HighCPUUsage # 告警名称
    expr: 100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[2m])) by (instance) * 100) > 80 # 触发告警的表达式
    for: 2m # 定义触发告警的持续时间
    labels: # 告警事件的标签
      severity: warning # 定义告警级别
    annotations:
      summary: "{{ $labels.instance }} CPU使用率超过80%"
      description: "{{ $labels.instance }} CPU使用率超过80%,当前值: {{ $value }}"
  - alert: HighMemoryUsage
    expr: 100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 100 > 80
    for: 2m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} 内存使用率超过80%"
      description: "{{ $labels.instance }} 内存使用率超过80%,当前值: {{ $value }}"
  - alert: HighDiskSpaceUsage
    expr: 100 - (node_filesystem_free_bytes{fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 80
    for: 2m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} {{ $labels.mountpoint }} 分区使用率超过80%"
      description: "{{ $labels.instance }} {{ $labels.mountpoint }} 分区使用率超过80%,当前值: {{ $value }}"

创建告警规则文件(监控目标无法连接)

groups:
- name: General
  rules:
  - alert: InstanceDown
    expr: up == 0 # "up"是内置指标,0表示存活状态,1表示无法连接
    for: 1m
    labels:
      severity: critical
    annotations:
      summary: "{{ $labels.instance }} 连接失败"
      description: "{{ $labels.instance }} 连接失败,可能是服务器故障!"

更新Prometheus的配置文件

[root@k8s-sample ~]# vim /etc/prometheus/prometheus.yml
[root@k8s-sample ~]# cat /etc/prometheus/prometheus.yml
global:
    scrape_interval: 15s
    evaluation_interval: 15s
alerting:
  alertmanagers:
    - static_configs:
      - targets:
        - 192.168.16.170:9093
rule_files:
  - "./rules/linux-server.yml"  # 相对路径
  - "./rules/general.yml" # 相对路径
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  - job_name: "linux-server"
    metrics_path: "/metrics" # 指标接口路径,默认/metrics
    scheme: http # 连接协议,默认http
    static_configs:
      - targets: ["192.168.16.170:9100"]
[root@k8s-sample ~]# 
[root@k8s-sample ~]# docker exec -it prometheus kill -HUP 1
[root@k8s-sample ~]# 

查看告警规则信息,在如下页面均可以查看到已定义告警规则的相关信息

  • 告警页面 http://:9090/alerts
  • 规则页面 http://:9090/rules
  • 配置页面 http://:9090/config

测试与验证
通过压力测试工具stress模拟cpu使用率过载告警。
告警触发后,可以在 http://:9090/alerts 和 http://:9093/#/alerts 页面看到告警的相关信息。

[root@k8s-sample ~]# dnf install -y epel-release && dnf install stress -y
[root@k8s-sample ~]# stress --version
stress 1.0.4
[root@k8s-sample ~]# 
[root@k8s-sample ~]# stress --cpu 8
stress: info: [41378] dispatching hogs: 8 cpu, 0 io, 0 vm, 0 hdd
^C
[root@k8s-sample ~]# 

自定义告警内容模版

自定义告警内容可以更直观显示关键信息,提高可读性。

  1. /etc/alertmanager目录下创建.tmpl结尾的模版文件
  2. Alertmanager配置文件中,通过templates字段指定告警模版文件的路径,在接收者配置中指定模版名称
  3. Alertmanager重新加载配置文件

标签:node,Alertmanager,--,Grafana,sample,prometheus,监控,k8s,root
From: https://www.cnblogs.com/anliven/p/18491599

相关文章

  • 车辆管理系统/车辆管理软件/车辆监控系统/车辆调度系统/车辆追踪系统/车辆信息管理系
    博主介绍......
  • 国标GB28181视频平台EasyCVR私有化部署视频平台偏远地区如何解决视频监控的需求
    一、背景需求在一些偏远地区,也具有视频监控的需求。但是这类场景中,一般无法就近获取市电,如果要长距离拉取市电,建设的成本非常高且长距离传输有安全隐患,因此风光互补远程视频监控方案的需求也较多。利用风光电转化原理为偏远或无电区域的视频监控设备提供电力供应,从而满足偏远地区......
  • 能源设施安全智能守护:AI监控卫士在油气与电力领域的应用
    能源行业的安全与稳定运行对于社会的可持续发展至关重要,无论是石油、天然气还是电力设施,都面临着复杂的监测需求。思通数科推出的AI视频监控卫士,通过应用先进的人工智能技术,为能源行业的安全监测提供了高效、智能的解决方案。以下将详细介绍系统在油气管道和电力巡检中的具体应用......
  • 基于Telegraf+Influxdb+Grafana的监控平台介绍
    我们知道这种监控平台的数据特征一般都是时间序列数据(简称时序数据),那么相应的这些数据最好是存储在时序数据库中,目前主流的时序数据库有InfluxDB、OpenTSDB、Graphite、TimescaleDB等。其中,InfluxDB是目前监控领域使用较多的时序数据库,并且基于InfluxDB有一套完善的开源解决方案......
  • CMDB平台(基础篇):聊聊CMDB和监控的关系
    CMDB与IT监控之间存在着紧密且重要的关系,它们共同构成了IT运维管理的两大支柱。我们将从几个方面详细探讨它们之间的关系: 一、定义与功能CMDB:定义:CMDB是一个集中存储系统,它包含了与IT基础设施相关的所有配置信息,这些信息涵盖了硬件、软件、网络设备、服务器、应用程序等IT资......
  • IT监控(基础篇):好的it监控系统具备什么特点?
    好的IT监控系统,应该是什么样的呢?在当今数字化时代,IT系统已成为企业运营的命脉。因此,一个高效、可靠的IT监控平台对于确保业务连续性和提高运维效率至关重要。那么,一个好的IT监控平台究竟应该具备哪些特点呢?让我们以乐维监控为例,进行深入解析。 全面性与深度监控好的IT监控平......
  • 泥石流山体滑坡监控AI视觉识别检测算法
    泥石流山体滑坡监控AI视觉识别检测算法基于AI视觉识别技术,泥石流山体滑坡监控AI视觉识别检测算法通过监控摄像头采集到的图像和视频流,利用先进的视觉识别算法分析和判断监控画面中是否出现泥石流和山体滑坡现象。泥石流山体滑坡监控AI视觉识别检测算法一旦系统识别到灾害事件的发......
  • 项目解决方案:大型赛事视频监控接入汇聚管理系统技术实现方案
    目录一.项目背景1.1背景描述1.2需求分析二.设计原则和建设目标2.1设计原则2.2建设目标三.系统设计实现3.1系统方案设计3.2网络拓扑说明四.产品介绍4.1概述4.2设备接入4.2.1内部设备接入4.2.2外部设备接入4.2.3级联上级平台4.3视频资源管理4.4视频观看4.4.1客......
  • 【远程监控新体验】OpenObserve结合内网穿透无公网IP远程访问全攻略
    文章目录前言1.安装Docker2.Docker镜像源添加方法3.创建并启动OpenObserve容器4.本地访问测试5.公网访问本地部署的OpenObserve5.1内网穿透工具安装5.2创建公网地址6.配置固定公网地址前言本文主要介绍如何在Linux系统使用Docker快速本地......
  • prometheus + alertmanager 搭建告警通知
    prometheus下载prometheus-2.53.2prometheus.yml文件修改global:scrape_interval:15sevaluation_interval:15salerting:alertmanagers:-static_configs:-targets:-127.0.0.1:9093rule_files:-"rules/rule-*.yml"scra......