首页 > 其他分享 >Project Euler 638 题解

Project Euler 638 题解

时间:2024-10-15 21:10:24浏览次数:7  
标签:int 题解 Project 638 res fac Euler mod

q-analog,老玩家集体起立!

image

这也就是说:

\[\binom{n+m}{n}_q=\sum_{\pi\in L_{n,m}}q^{area(\pi)} \]

结束!

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=1e9+7,maxn=2e7+5;
int qp(int a,int b,int p=mod){
	int res=1;
	while(b){
		if(b&1)res=(res*a)%p;
		a=(a*a)%p;
		b>>=1;
	}
	return res;
}
int fac[maxn];
int C(int n,int m,int q){
	fac[1]=1;int I=qp(q-1,mod-2);
	for(int i=2,z=q;i<=n;i++){
		z=z*q%mod;
		int x=(z-1)*I%mod;
		if(q==1)x=i;
		fac[i]=fac[i-1]*x%mod;
	}
	return fac[n]*qp(fac[m],mod-2,mod)%mod*qp(fac[n-m],mod-2,mod)%mod;
}
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int K,ans=0;cin>>K;
	for(int i=1;i<=K;i++)(ans+=C((pow(10,i)+i)*2,pow(10,i)+i,i))%=mod;
	cout<<ans<<endl;
	return 0;
}

标签:int,题解,Project,638,res,fac,Euler,mod
From: https://www.cnblogs.com/british-union/p/18468462

相关文章

  • 2024某校新生校队选拔赛题解
    游记某校某院与某院联合培养机制给排了两场讲座,讲完吃饭,讲座时间\(8:00-12:00,\)拖堂\(10\)min,到食堂\(10\)min,吃饭\(30\)min,走回去\(10\)min,打开网址发现时间只够看榜的一看榜我草\(5\)小时连\(4\)个题都做不出来翻题面发现A,L纯签到,B半签到,遂确信成分题解题目链接A验证是......
  • Project Euler 457 题解
    初等数论小题目求\[n^2-3n-1\equiv0\pmod{p^2}\]配方,得到:\[(2n-3)^2\equiv13\pmod{p^2}\]根据亨泽尔引理,只需得到\((2n-3)^2\equiv13\pmod{p}\)的解即可提升到\(p^2\)。这是二次剩余,直接解。单次求解\(O(\logn)\),时间复杂度\(O(n)\)。#include<bits/stdc++.h......
  • TopCoder SRM616 ColorfulCoins 题解
    TopCoderSRM616ColorfulCoins题意给一套货币,保证任意两种货币存在倍数关系且颜色互不相同。已知货币的币值集合,每次可以询问一个金额,给出货币张数最小的表示方案。问最小的询问次数,使得通过已知信息可以对应货币面值和颜色。分析最大的面值问一个\(\inf\)即可。这时只需要......
  • [ABC062C]/[ARC074A] Chocolate Bar 题解
    神秘分讨题(?总共\(4\)中情况。第一种:三个竖的并列:ans=min(ans,(h%3>0)*w);。第二种:三个横的并列:ans=min(ans,(w%3>0)*h);。第三种:一个横的矩形,然后是两个竖着的。For(i,1,h){ intfst=i*w; intscd=(w/2)*(h-i); intthd=(w%2>0)*(h-i)+(w/2)*(h-i); ans=min(ans......
  • 堆排序题解
    给定一个整数序列,请按非递减序输出采用堆排序的各趟排序后的结果。输入格式:测试数据有多组,处理到文件尾。每组测试数据第一行输入一个整数n(1≤n≤100),第二行输入n个整数。输出格式:对于每组测试,输出若干行,每行是一趟排序后的结果,每行的每两个数据之间留一个空格。输入样例......
  • 「题解」Educational Codeforces Round 170 (Rated for Div. 2)
    before我不想写作业呜呜。A.TwoScreensProblemA.TwoScreensSol&Code理解题意后发现使用复制的方法完成最长公共前缀即可。#include<bits/stdc++.h>typedeflonglongll;typedefstd::pair<int,int>pii;intT;std::strings1,s2;intmain(){scanf("%d"......
  • CF1955G GCD on a grid 题解
    洛谷链接我们暴力枚举可能的答案\(k\),然后跑一边dp。设\(f_{i,j}\)表示在格子\((i,j)\)是否可以满足有一条路径可以到达该格子且该格子是否为\(k\)的倍数,递推式即为\(f_{i,j}=(k\mida_{i,j}\operatorname{and}(f_{i-1,j}\operatorname{or}f_{i,j-1}))\)最后的答......
  • ARC156C 题解
    blog。显然答案为\(0\)不行。打表发现最优答案总为\(1\)。考虑构造取到\(1\)的下界。观察到,\(\text{LCS}\le1\)等价于去掉两序列都不存在的数后,两序列完全相反。于是有:在\(\{x\},\{y\}\)后增加两序列都不存在的数,不影响LCS。进行\(\{x\}\to\{a,x,b\},\{y\}\to\{b,......
  • # Educational Codeforces Round 170 (Rated for Div. 2) 题解D
    EducationalCodeforcesRound170(RatedforDiv.2)题解DD.AttributeChecks链接:Problem-D-Codeforces思路:由于\(m\)还有\(abs(r[i])\)很小,考虑dp因为每个0能对后面多少个check做出贡献是固定的,所以预处理因为我们每次的0的个数是单调不减的所以,我们上一次......
  • 【题解】P3917 异或序列
    传送门也算是一个有关于异或的小trick吧,简单记录一下。可以维护原序列的前缀异或和\(sum\),于是原题答案贡献变为\(\sum\limits_{i=1}^n\sum\limits_{j=i}^nsum_j\oplussum_{i-1}\)。变形一下为\(\sum\limits_{i=0}^{n-1}\sum\limits_{j=1}^{i+1}sum_i\oplussum_{j}......