首页 > 其他分享 >大模型技术学习过程梳理

大模型技术学习过程梳理

时间:2024-10-15 18:21:48浏览次数:11  
标签:训练 模型 技术 学习 神经网络 任务 梳理

学习是一个从围观到宏观,从宏观到微观的一个过程

学习大模型技术也有几个月的时间了,之前的学习一直是东一榔头,西一棒槌,这学一点那学一点,虽然弄的乱七八糟,但对大模型技术也算有了一个初步的认识。

因此,今天就来整体梳理一下大模型技术的框架,争取从大模型所涉及的理论,技术,应用等多个方面对大模型进行梳理。‍‍‍‍‍‍‍‍

01

大模型技术梳理

这次梳理大模型不仅仅是大模型本身的技术,而是一个以大模型为核心的涉及到多个方面的理论,技术和应用实践,也可以说是对自己学习大模型技术的总结吧。

话不多表,下面开始进入正题。‍

首先,大家应该明白一件事,大模型技术是人工智能技术的一个分支,是目前主流的一个研究方向,但并不是唯一的方向。‍‍‍‍‍

人工智能技术是一个通过某种技术手段人为的创建一个具有类人智能的系统(软件或硬件),而大模型技术是一种仿造人类学习进化的一种方式,使用深度学习(机器学习)算法模仿人类大脑神经元,来实现智能的一种方式,其主要载体是神经网络。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

神经网络之所以得到发展的原因是因为,基于神经网络架构进行预训练之后,神经网络会产生一种无法解释的_涌现_能力,而这个涌现能力特别像是具有了智能一样。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_神经网络模型架构_‍‍‍‍‍

既然是模仿神经网络,那么就需要一种深度学习模型来模仿人类大脑神经系统,比如CNN(卷积神经网络),RNN(循环神经网络),以及目前主流的Transformer模型,还有LSTM,ResNet,GANs等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

神经网络的主要结构为一个输入层,一个输出层,以及隐藏层(一个或多个层组成),不同网络层之间使用_全连接_的方式进行连接,每一个圆都代表着一个神经元,如下图所示:‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在神经网络中,除了输入/输出层之外,每一个神经元都有其参数,神经网络的效果就是由这些参数值决定的。

神经网络模型通过一种叫正向传播,损失计算和反向传播的方式来调整神经网络模型中每个神经元的参数。‍‍‍‍‍‍‍‍‍‍‍‍

通过把大量的训练数据输入到神经网络中,让神经网络进行“学习”(不断的调整参数),来达到类智能的能力。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

不同神经网络的架构和实现有所不同,但其核心点都是基于此模型实现的,对想学习神经网络的朋友来说,先学会基础的神经网络架构,然后再针对不同的神经网络模型进行深化是最好的选择。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

目前的大模型主要采用的是预训练的方式来实现智能的,简单来说就是给神经网络模型一堆资料,让它自己学,自己看,自己总结;其中给答案的叫做监督学习,没答案的叫无监督学习。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

然后根据不同的任务需求,又设计出用来解决不同类型任务的神经网络,比如分类任务,图片处理任务,自然语言处理任务等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

至于大模型技术细节方面的东西,就不详细描述了,感兴趣的可以自己学习,比如编码器,损失计算和反向传播怎么实现等。‍‍‍‍

再有,设计并训练一个完整可用的神经网络模型是一个复杂的工程,比如模型的设计,训练数据的收集与处理,损失函数与反向传播算法的设计,模型过拟合,欠拟合等问题。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而且随着模型规模的增大,模型的训练难度成几何式增长,比如分布式训练,并行计算等问题;以及为了提升大模型的学习效率,节约成本而设计的强化学习,迁移学习等。‍‍‍‍‍

最后,为了使得大模型更像人,也为了实现真正的AGI(通用人工智能),现在多模态大模型大行其道,而多模态大模型技术比传统大模型的技术复杂度又上升了不止一个台阶。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_基于知识库的向量检索——RAG_‍‍

大模型技术虽然很强大,但其有几个明显的缺点,第一就是知识是有限制的,因为采用的是预训练方式,因此大模型的知识最多只能到训练开始的时间节点,之后产生的新的知识大模型无法获取。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

其次,由于训练大模型的成本问题,导致很多企业无法承担大模型的训练成本,因此只能使用第三方的大模型,但第三方大模型没有在特定领域的数据上进行训练或微调,因此,其表现能力一般。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这时RAG就出现了,RAG中文是检索增强,是通过外挂知识库的方式,提问大模型之前先从向量数据库中查询数据,然后一起输入到大模型,这样大模型就相当于有了一个外部资料库,遇到不懂的问题就可以通过查资料的方式解决。‍‍‍‍‍‍‍

以目前的技术来说,RAG是大模型技术的一个重要节点,即是大模型能力范围的扩展,也是对大模型短板的补充。‍‍‍‍‍‍‍

微调与提示词工程

我们一般使用的大模型都是预训练模型,也就是用某些数据集训练过的模型;但这些模型一般情况下只会在特定领域表现出色,但如果用来解决自己的实际问题可能就不太好用了。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这时怎么让预训练模型在其它任务中表现更好就是一个值得思考的问题,而这就是微调与提示词工程存在的意义。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

微调

微调从技术手段上来说和模型训练没有区别,只不过微调是在相似任务的预训练模型的基础之上,通过少量的数据对模型参数进行调整,使得其能够更加适应当前任务的一种方式。由于其成本低,对资金和技术要求要比完全重新设计和训练一款模型要低的多。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

因此,微调存在的意义是为了节约成本和降低门槛,如果资金充足的情况下,根据任务需求设计并训练一款模型是最好的选择,微调是退而求其次的一种方式。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

提示词工程

如果说微调是为了让大模型去适应特定的任务,那么提示词的作用就是怎么更好的使用一个大模型。‍‍‍‍‍‍‍‍‍

根据研究发现,对待同样的问题使用不同的提示词有时会得到完全不一样的效果,因此根据这一现象就提出了提示学习的方法。

用人类来举例就是,假如有人问你吃饭了吗这种简单的问题,你可以下意识的回答,而且可以回答的很好;大模型也是如此,如果你问大模型很简单的问题,它也能回答的比较好。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但如果问到一些复杂的问题就需要更加准确的描述,比如说根据当前的就业环境,从经济,市场,贸易,国际局势等多个方面来分析一下产生当前情况的原因,以及后续的应对方法。‍‍‍‍‍‍‍‍‍‍‍‍‍

这种复杂的问题,不论是问人还是问大模型,你说的越准确,它回答的才能更好,这就是提示词存在的意义。‍

_智能体Agent_‍‍‍‍‍‍

在前面的描述中,神经网络架构讲的是怎么构建一个大模型,知识库是怎么补充和强化大模型,微调和提示词是怎么更好的使用大模型,那么智能体就是真正的使用大模型,研究大模型的具体应用。‍‍‍‍‍‍‍‍‍‍‍

如果把大模型比做人类的大脑,那么智能体就是大模型的手和脚。‍‍

在此之前使用大模型,我们能够让它回答问题,写文章,生成图片和视频,但这都是大模型天生具备的能力,就类似于人类可以写写画画一样。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但如果让大模型完成更加复杂的任务,这时就需要借助外部工具,比如外出旅行需要设计旅行路线,定酒店和车票等。‍‍‍‍‍‍

这种任务就完全超出大模型或者人类本身的能力圈,如果想完成这些任务就需要借助外部工具,比如说手机APP。‍‍‍‍‍‍‍‍‍‍‍‍‍

智能体就是大模型+外部工具实现的一种能够独自分析和解决复杂任务的一种载体,利用大模型的独立规划能力,让它根据自己的判断去调用外部工具完成任务。

使用的技术主要有function call,langchain等;如上图所示,大模型使用function call的方式调用外部工具,使用自身能力完成规划和行动,并且由于大模型没有足够的记忆能力,需要增加记忆模块来记录对复杂任务的分析过程。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

目前,大模型解决复杂任务,主要通过思维链(CoT)的方式来实现对复杂问题的分解。‍‍‍‍‍‍‍‍‍‍‍‍‍

langchain是一种人工智能开发框架,它封装了大部分调用大模型的细节,以及其它辅助功能,比如文档的加载,多个大模型的链式调用,提示词模板的封装等,与其类似的还有LlamaIndex等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_总结_‍‍‍‍‍‍‍

从大的方向上来说,大模型从技术到应用,主要涉及到以上几个大的模块;而每个模块又涉及到大量的技术和细节。比如打造不同任务的神经网络模型,强化学习,迁移学习,知识蒸馏,分布式训练与存储等;以及RAG使用的向量检索,向量数据库,语义理解等,还有复杂任务的思维链(CoT),模型训练使用的LoRa等微调方法。‍‍‍‍‍‍‍‍‍‍‍‍

还有多模态模型中的知识对齐,数据融合等复杂技术。‍‍‍

基于大模型开发的人工智能机器人,感兴趣的可以点击查看:

因此,大模型技术到应用到学习是一个系统性的复杂过程,中间涉及到无数的技术细节和理论,并且还在不断的产生新的技术和理论。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

千里之行,始于足下。‍‍‍‍‍‍‍‍‍‍‍

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

标签:训练,模型,技术,学习,神经网络,任务,梳理
From: https://blog.csdn.net/lvaolan/article/details/142961298

相关文章

  • 普通人学习大模型应该怎么学?
    前言近年来,人工智能领域掀起了一股“大模型”热潮,吸引了无数研究者和企业关注。所谓“大模型”,是指那些参数量巨大、结构复杂人工智能模型,如谷歌BERT、OpenAI的GPT等。这些模型在自然语言处理、计算机视觉等任务中取得了显著成果,引领着人工智能技术发展。那么,这些“大模型......
  • 教你从零开始在MaixCam上部署自己本地训练的Yolov5模型(5)- 转换格式并部署为app
    本博客会从一个从未部署过任何环境的电脑上一步步复现如何本地训练自定义模型并成功部署到Maixcam上实现数字识别的功能。文章中会引用到我当时学习是参考到的文章,都会在下面列出来,在此对这些向我提供过帮助的博主表示感谢!!本文中默认读者已经了解过相对应的知识,一些非常......
  • Python学习流水账Day5——有关Python中的函数
    文章目录前言一、Python中的函数1.内置函数2.定义一个函数调用函数为函数设置参数实参形参给函数设置多个形参默认形参函数的返回值函数的变量局部变量全局变量3.匿名函数4.递归函数总结前言简单的python复习第五天:不是用来教学的,上班没劲,主打一个本科毕业没竞......
  • 一份转型大模型产品经理指南
    作为一个产品经理,你可能已经熟悉了一些常见的AI技术和应用,比如机器学习、深度学习、自然语言处理、计算机视觉等。但是,你是否了解什么是大模型?大模型又有什么特点和优势?为什么大模型会成为AI领域的一个重要趋势?如果你想转行做大模型,你需要具备哪些基本素质和技能?你又该如何......
  • 基于大模型 + 知识库的 Code Review 实践
    背景......
  • 上海交大开源超逼真声音克隆 TTS;微软探索音生图 AI 模型丨 RTE 开发者日报
       这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。 我们的社区编辑团队会整理分享RTE(Real-TimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编辑的个人观点,欢迎大......
  • 钓鱼学习
    一、邮件钓鱼通过最新时事展开钓鱼伪造系统升级场景钓鱼最新漏洞补丁更新通知钓鱼伪造公司服务器被攻击钓鱼模仿高职人员钓关键信息案例:https://www.freebuf.com/articles/es/321412.htmlhttps://www.secrss.com/articles/31208https://www.4hou.com/posts/z9yYhttps:......
  • 前端开发者必备:学习资源与社区汇总
    在快速变化的前端领域,拥有可靠的学习资源和交流社区对于开发者来说至关重要。以下是一份整理的前端学习资源与社区汇总,希望能为你的前端之旅提供助力。前端学习资源推荐基础学习资源MDNWebDocs网址:https://developer.mozilla.org/描述:Mozilla提供的前端技术文档,内容全面......
  • python实现主动学习【一】modAL example active_regression
    文章目录一、简要介绍二、代码运行2.1前期准备2.1.1关于sklearn.gaussian_process.kernels的小展开1.RBFKernel(RadialBasisFunction)2.WhiteKernel3.组合内核的原理4.在主动学习中的优势5.其他核函数的特点6.如何组合使用不同的核2.1.2关于ActiveLearner......
  • Flux 文生图模型,一键整合包!解压即用,出图效果惊艳
    朋友们!今天给大家带来一款全新且超强的AI文生图神器——Flux文生图模型!(最低N卡3060以上电脑)由知名AI开发团队BlackForestLabs(黑森林实验室)打造,这款高质量的文本到图像生成模型在多个方面展现了超凡的性能。无论是细腻的手部细节、复杂的多主体场景,还是中文文本......