首页 > 其他分享 >落地ZeroETL 轻量化架构,ByteHouse推出“四个一体化”战略

落地ZeroETL 轻量化架构,ByteHouse推出“四个一体化”战略

时间:2024-10-15 11:02:02浏览次数:9  
标签:ZeroETL 数据仓库 一体化 轻量化 实现 ByteHouse 数据

在数字化转型的浪潮中,数据仓库作为企业的核心数据资产,其重要性日益凸显。随着业务范围扩大,企业也会使用不同的数据仓库来管理、维护相关数据。研发人员需要花费大量时间和精力,从中导出数据,然后进行手动整理、转换格式,再导入到分析工具中完成数据分析。该过程不仅繁琐,还容易出错。

ZeroETL 则提供了一个全新的解决方案,让研发人员无需操作复杂的数据抽取、转换和加载(ETL)过程就能实现数据整合和分析。它能够自动从不同软件中获取数据,直接将数据整合到一起,以统一格式呈现,帮助使用者更快速、轻松地进行数据分析。

而火山引擎云原生数据仓库 ByteHouse 则通过“四个一体化”逐步实现 ZeroETL 轻量化数据架构,不仅让数仓更轻快,数据免开发,还能保障数据质量,实现智能运维。

据火山引擎 ByteHouse 产品负责人介绍,“ByteHouse 是一款 OLAP(联机分析处理)产品,用人体比喻,相当于腰部,为力量汇聚之地。但如果缺少四肢的支撑,腰部产品很难独立发挥作用。由此,ByteHouse 提出‘四个一体化’的核心理念,旨在通过全面融合,实现数据的无缝流动和高效利用。”

ByteHouse“四个一体化”架构

 

首先,TP、AP 一体化。TP(联机事务处理)和 AP(联机分析处理)的一体化是 ByteHouse 的核心优势之一。通过这一技术,ByteHouse 能够实时捕获上游数据,实现数据的即时分析和消费。其中,CDC(变更数据捕获)技术能够将上游数据库的变更数据以秒级速度拉取到数据仓库中,为报表和仪表盘提供实时数据支持。此外,ByteHouse 还与主流的 CDC 产品实现了无缝对接,包括火山引擎数智平台 VeDI 旗下的 DataSail、开源的 DataX、Flink 等,进一步增强了数据的实时性和准确性。

其次,湖、仓一体化。在数据湖和数据仓库的融合方面,ByteHouse 支持对 Lake 中的数据以外表的方式进行读写,包括 ORC、Parquet、Hive、Iceberg、Paimon 和 Hudi 等开放格式。同时,为了加速性能,ByteHouse 在优化器和 Schema 动态感知层面做了增强,并为开放格式提供了原生读取器,确保在湖仓之间实现高性能的数据流动。

再次,AP、AI 一体化。ByteHouse 开发了 Vector search 高级引擎,其可插拔的特点让用户可以根据不同的应用需求开启不同的计算组。此外,ByteHouse 还在不断探索运用 AI 能力让数据仓库变得更加智能,包括查询优化、索引物化视图、cache、schema 等方面。

最后,仓、市一体化。对于上规模的公司而言,数据分析中台往往由多个集群构成,数据流动复杂。ByteHouse 通过 Remote 方式实现了不同集群之间的数据联邦,帮助用户免除数据搬迁的繁琐操作,不仅提高了数据流动的效率和准确性,还降低了运维成本。

通过“四个一体化”战略的实施,ByteHouse 实现了 Zero ETL 理念。Zero ETL 不止指一种工具,更是强调数据的轻量化、高效化和智能化的理念。基于该理念,ByteHouse 能帮助企业实现数据免搬迁、开发敏捷化、数据质量提升以及运维智能化。未来,随着技术的不断迭代和升级,ByteHouse 将继续为企业提供更加高效、智能和可靠的云原生数仓解决方案。

标签:ZeroETL,数据仓库,一体化,轻量化,实现,ByteHouse,数据
From: https://www.cnblogs.com/bytedata/p/18466999

相关文章

  • GIS、向量、文字检索... 火山引擎 ByteHouse 集成全场景分析能力
    企业业务场景增多、规模扩大,对于底层数据架构来说,可能也会愈加复杂。 比如,某企业因自身业务发展,需要引入向量检索能力,但前期选型的技术架构并不能直接支持,只能重新引入向量数据库。这意味着,研发团队要维护多个组件,让底层架构非常复杂,不仅带来数据冗余,也给数据运维带来压力,造成......
  • YOLOv8改进 | 主干篇,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1
    摘要摘要:将卷积神经网络(CNN)部署在嵌入式设备上是困难的,因为嵌入式设备的内存和计算资源有限。特征图的冗余是成功的CNN的一个重要特征,但在神经网络架构设计中很少被研究。作者提出了一种新颖的Ghost模块,用于通过廉价操作生成更多的特征图。基于一组内在特征图,我们......
  • [机器视觉][轻量化网络]GhostFormer: Efficiently amalgamated CNNtransformer archit
    目的与成果:     本文旨在提出一个轻量化的模型,在减少模型参数量的同时,保持一定的精度,  实验表明,该模型在PascalVOC数据集上的计算成本不到YOLOv7的一半,仅损失约3%[email protected],在MSCOCO数据集上的损失为9.7%[email protected],与GhostNet相比提高了0.95。本文的主要思想: ......
  • YOLOv9改进,YOLOv9主干网络替换为GhostNetV3(2024年华为提出的轻量化架构,全网首发),助力
    摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本......
  • 助力降本增效,ByteHouse 打造新一代云原生数据仓库
    随着数据量的爆炸式增长、企业上云速度加快以及数据实时性需求加强,云原生数仓市场迎来了快速发展机遇。据IDC、Gartner研究机构数据显示,到2025年,企业50%数据预计为云存储,75%数据库都将运行在云上,全球数据处理预计有30%为实时数据处理,80%数据预计为非结构化数据,这将驱使......
  • 助力降本增效,ByteHouse打造新一代云原生数据仓库
    随着数据量的爆炸式增长、企业上云速度加快以及数据实时性需求加强,云原生数仓市场迎来了快速发展机遇。据IDC、Gartner研究机构数据显示,到2025年,企业50%数据预计为云存储,75%数据库都将运行在云上,全球数据处理预计有30%为实时数据处理,80%数据预计为非结构化数据,这将驱使云......
  • ByteHouse新一代云数仓关键技术及最佳实践
    更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群今日解读:ByteHouse视角下的新一代云数仓。主要内容包括:ByteHouse简介、云数仓核心能力解析以及最佳实践。ByteHouse简介ByteHouse是火山引擎数智平台VeDI旗下的一款云原生数仓产品,以ClickHouse......
  • ByteHouse新一代云数仓关键技术及最佳实践
    更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 今日解读:ByteHouse视角下的新一代云数仓。主要内容包括:ByteHouse简介、云数仓核心能力解析以及最佳实践。 ByteHouse简介ByteHouse是火山引擎数智平台VeDI旗下的一款云原生数仓产品,以......
  • 三维模型,不要只说轻量化
    一拿到三维模型,“各路神仙”都会要求先进行轻量化。但我发现很多人其实对轻量化的目的,及应用场景是没有概念的。因此本文以我自己数据处理的角度,来说说三维模型要加载到渲染平台,围绕轻量化方面,它该做什么,不该做什么。1、三维模型为啥会卡三维模型就是一个文件,文件大了自然卡......
  • 助力企业降低成本,ByteHouse打造新一代“弹性”云数仓
    更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群在当今的互联网应用中,业务流量往往具有很大的不确定性。例如,电商平台在“618”“双11”等促销活动期间,访问量会呈爆发式增长,可能是平时的十倍甚至百倍,导致系统无法承载如此高负载而崩溃。这就......