首页 > 其他分享 >Moectf2024-All-Crypto

Moectf2024-All-Crypto

时间:2024-10-14 21:48:17浏览次数:7  
标签:Moectf2024 BB bytes Crypto flag print import

前三周都出了,第四周有两题不会,为复现

Crypto

入门指北

from Crypto.Util.number import bytes_to_long, getPrime
from secret import flag
p = getPrime(128)
q = getPrime(128)
n = p*q
e = 65537
m = bytes_to_long(flag)
c = pow(m, e, n)
print(f"n = {n}")
print(f"p = {p}")
print(f"q = {q}")
print(f"c = {c}")

知道p和q直接就可以求出flag

from Crypto.Util.number import *
n = 40600296529065757616876034307502386207424439675894291036278463517602256790833
p = 197380555956482914197022424175976066223
q = 205695522197318297682903544013139543071
c = 36450632910287169149899281952743051320560762944710752155402435752196566406306
e=65537
print(long_to_bytes(pow(c,inverse(e,(p-1)*(q-1)),n)))
#b'moectf{the_way_to_crypto}'

Week1

Signin

from Crypto.Util.number import*
from secret import flag


m = bytes_to_long(flag)
p = getPrime(1024)
q = getPrime(1024)
n = p*q
e = 65537
c = pow(m,e,n)
pq = (p-1)*(q-2)
qp = (q-1)*(p-2)
p_q = p + q


print(f"{c = }")
print(f"{pq = }")
print(f"{qp = }")
print(f"{n = }")
print(f"{p_q = }")

直接选p+q这一个值,利用z3求解就好了。

from Crypto.Util.number import *
c = 5654386228732582062836480859915557858019553457231956237167652323191768422394980061906028416785155458721240012614551996577092521454960121688179565370052222983096211611352630963027300416387011219744891121506834201808533675072141450111382372702075488292867077512403293072053681315714857246273046785264966933854754543533442866929316042885151966997466549713023923528666038905359773392516627983694351534177829247262148749867874156066768643169675380054673701641774814655290118723774060082161615682005335103074445205806731112430609256580951996554318845128022415956933291151825345962528562570998777860222407032989708801549746
pq = 18047017539289114275195019384090026530425758236625347121394903879980914618669633902668100353788910470141976640337675700570573127020693081175961988571621759711122062452192526924744760561788625702044632350319245961013430665853071569777307047934247268954386678746085438134169871118814865536503043639618655569687154230787854196153067547938936776488741864214499155892870610823979739278296501074632962069426593691194105670021035337609896886690049677222778251559566664735419100459953672218523709852732976706321086266274840999100037702428847290063111455101343033924136386513077951516363739936487970952511422443500922412450462
qp = 18047017539289114275195019384090026530425758236625347121394903879980914618669633902668100353788910470141976640337675700570573127020693081175961988571621759711122062452192526924744760561788625702044632350319245961013430665853071569777307047934247268954386678746085438134169871118814865536503043639618655569687077087914198877794354459669808240133383828356379423767736753506794441545506312066344576298453957064590180141648690226266236642320508613544047037110363523129966437840660693885863331837516125853621802358973786440314619135781324447765480391038912783714312479080029167695447650048419230865326299964671353746764860
n = 18047017539289114275195019384090026530425758236625347121394903879980914618669633902668100353788910470141976640337675700570573127020693081175961988571621759711122062452192526924744760561788625702044632350319245961013430665853071569777307047934247268954386678746085438134169871118814865536503043639618655569687534959910892789661065614807265825078942931717855566686073463382398417205648946713373617006449901977718981043020664616841303517708207413215548110294271101267236070252015782044263961319221848136717220979435486850254298686692230935985442120369913666939804135884857831857184001072678312992442792825575636200505903
p_q = 279533706577501791569740668595544511920056954944184570513187478007551195831693428589898548339751066551225424790534556602157835468618845221423643972870671556362200734472399328046960316064864571163851111207448753697980178391430044714097464866523838747053135392202848167518870720149808055682621080992998747265496


from z3 import *
s=Solver()
x=Int('x')
y=Int('y')
s.add(x*y==n)
s.add(x+y==p_q)
print(s.check())

s=s.model()

p=s[x].as_long()
q=s[y].as_long()

e=65537
print(long_to_bytes(pow(c,inverse(e,(p-1)*(q-1)),n)))

#b'moectf{Just_4_signin_ch4ll3ng3_for_y0u}'

ez_hash

from hashlib import sha256
from secret import flag, secrets

assert flag == b'moectf{' + secrets + b'}'
assert secrets[:4] == b'2100' and len(secrets) == 10
hash_value = sha256(secrets).hexdigest()
print(f"{hash_value = }")

利用itertools爆破很方便

from hashlib import sha256
import itertools
hash_value = '3a5137149f705e4da1bf6742e62c018e3f7a1784ceebcb0030656a2b42f50b6a'

range_values = range(48, 58)
# 生成8层嵌套循环的笛卡尔积
for combination in itertools.product(range_values, repeat=6):
    i,j,k,l,m,n=combination
    secret=b'2100'+int.to_bytes(i)+int.to_bytes(j)+int.to_bytes(k)+int.to_bytes(l)+int.to_bytes(m)+int.to_bytes(n)
    my_hash_value = sha256(secret).hexdigest()
    if my_hash_value==hash_value:
        print(b'moectf{' + secret + b'}')
        break
#b'moectf{2100360168}'

Big and small

from secret import flag
from Crypto.Util.number import*
m = long_to_bytes(flag)
p = getPrime(1024)
q = getPrime(1024)
n = p*q
e = 3
c = pow(m,e,n)

n很大,满足条件\(c^3<n\),直接对c开根就好了。

from Crypto.Util.number import *
from gmpy2 import *
c = 150409620528288093947185249913242033500530715593845912018225648212915478065982806112747164334970339684262757
e = 3
n = 20279309983698966932589436610174513524888616098014944133902125993694471293062261713076591251054086174169670848598415548609375570643330808663804049384020949389856831520202461767497906977295453545771698220639545101966866003886108320987081153619862170206953817850993602202650467676163476075276351519648193219850062278314841385459627485588891326899019745457679891867632849975694274064320723175687748633644074614068978098629566677125696150343248924059801632081514235975357906763251498042129457546586971828204136347260818828746304688911632041538714834683709493303900837361850396599138626509382069186433843547745480160634787
print(long_to_bytes(iroot(c,e)[0]))
#b'flag{xt>is>s>b}'

baby_equation

from Crypto.Util.number import *
from secret import flag


l = len(flag)
m1, m2 = flag[:l//2], flag[l//2:]
a = bytes_to_long(m1)
b = bytes_to_long(m2)
k = 0x2227e398fc6ffcf5159863a345df85ba50d6845f8c06747769fee78f598e7cb1bcf875fb9e5a69ddd39da950f21cb49581c3487c29b7c61da0f584c32ea21ce1edda7f09a6e4c3ae3b4c8c12002bb2dfd0951037d3773a216e209900e51c7d78a0066aa9a387b068acbd4fb3168e915f306ba40
assert ((a**2 + 1)*(b**2 + 1) - 2*(a - b)*(a*b - 1)) == 4*(k + a*b)

先推导一下断言(需要一点脑力):

\[((a^2+1)*(b^2+1)-2*(a-b)*(a*b-1))=4*(k+a*b)\\ a^2b^2+a^2+b^2+1-2*(a^2b-a-ab^2+b)=4k+4ab\\ a^2b^2-2a^2b+2ab^2-4ab+a^2+b^2+2a-2b+1=4k\\ 到这里可以猜测出需要合并成什么什么多项式的乘积(纯看脑子)\\ (ab-a+b-1)^2=((a+1)*(b-1))^2=4k \]

先求出\(\sqrt{4k}\),然后直接yafu分解。

然后利用itertools,爆破组合值,猜测出a,也就是flag的前面,因为有flag头可以判断,然后去掉筛选出的值就是b。

from Crypto.Util.number import *
from gmpy2 import *
k=0x2227e398fc6ffcf5159863a345df85ba50d6845f8c06747769fee78f598e7cb1bcf875fb9e5a69ddd39da950f21cb49581c3487c29b7c61da0f584c32ea21ce1edda7f09a6e4c3ae3b4c8c12002bb2dfd0951037d3773a216e209900e51c7d78a0066aa9a387b068acbd4fb3168e915f306ba40

k=k*4
print(iroot(k,2)[1])
k4=iroot(k,2)[0]
print(k4)


P1 = 2
P1 = 2
P1 = 2
P1 = 2
P1 = 3
P1 = 3
P2 = 31
P2 = 61
P3 = 223
P4 = 4013
P6 = 281317
P7 = 4151351
P9 = 339386329
P9 = 370523737
P13 = 5404604441993
P14 = 26798471753993
P44 = 64889106213996537255229963986303510188999911
P29 = 25866088332911027256931479223


import itertools
a=[2,2,2,2,3,3,31,61,223,4013,281317,4151351,339386329,370523737,5404604441993,26798471753993,64889106213996537255229963986303510188999911,25866088332911027256931479223]

s = set()
for r in range(1, len(a) + 1):
    combination = list(itertools.combinations(a, r))
    for i in combination:
        s.add(i)
ans=[]
for i in s:
    tmp=1
    for j in i:
        tmp=tmp*j
    ans.append(tmp)

for i in ans:
    flag=long_to_bytes(i-1)
    if b'moectf' in flag or b'flag' in flag:
        print(flag)
        print(i)
        break


a=b'moectf{7he_Fund4m3nt4l_th30r3'
#(2, 2, 3, 223, 4013, 281317, 4151351, 339386329, 26798471753993, 25866088332911027256931479223)

temp=[2,2,3,31,61,370523737,5404604441993,64889106213996537255229963986303510188999911]
b=1
for i in temp:
    b=b*i
print(a+long_to_bytes(b))

#b'moectf{7he_Fund4m3nt4l_th30r3m_0f_4rithm3tic_i5_p0w4rful!|'
#b'moectf{7he_Fund4m3nt4l_th30r3m_0f_4rithm3tic_i5_p0w4rful!}'

Week2

大白兔

from Crypto.Util.number import *

flag = b'moectf{xxxxxxxxxx}'
m = bytes_to_long(flag)

e1 = 12886657667389660800780796462970504910193928992888518978200029826975978624718627799215564700096007849924866627154987365059524315097631111242449314835868137
e2 = 12110586673991788415780355139635579057920926864887110308343229256046868242179445444897790171351302575188607117081580121488253540215781625598048021161675697

def encrypt(m , e1 , e2):
    p = getPrime(512)
    q = getPrime(512)
    N = p*q
    c1 = pow((3*p + 7*q),e1,N)
    c2 = pow((2*p + 5*q),e2,N)
    e = 65537
    c = pow(m , e , N)
    return c
    

print(encrypt(m ,e1 , e2))

推导一下:

\[令x=e_1*e_2,计算:\\ c_1^{e_2}=3^x*p^x+7^x*q^x\mod N\\ c_2^{e_1}=2^x*p^x+5^x*q^x\mod N\\ 再计算:\\ c_1^{e_2}*2^x=2^x*3^x*p^x+2^x*7^x*q^x\mod N\\ c_2^{e_1}*3^x=3^x*2^x*p^x+3^x*5^x*q^x\mod N\\ 两式相减得:\\ c_1^{e_2}*2^x-c_2^{e_1}*3^x=(2^x*7^x-3^x*5^x)*q^x\mod N=kq^x+tN=(kq^{x-1}+tp)*q \]

之后就可以与N求GCD就可以得到q了

from Crypto.Util.number import *
from gmpy2 import *
N = 107840121617107284699019090755767399009554361670188656102287857367092313896799727185137951450003247965287300048132826912467422962758914809476564079425779097585271563973653308788065070590668934509937791637166407147571226702362485442679293305752947015356987589781998813882776841558543311396327103000285832158267
c1 = 15278844009298149463236710060119404122281203585460351155794211733716186259289419248721909282013233358914974167205731639272302971369075321450669419689268407608888816060862821686659088366316321953682936422067632021137937376646898475874811704685412676289281874194427175778134400538795937306359483779509843470045
c2 = 21094604591001258468822028459854756976693597859353651781642590543104398882448014423389799438692388258400734914492082531343013931478752601777032815369293749155925484130072691903725072096643826915317436719353858305966176758359761523170683475946913692317028587403027415142211886317152812178943344234591487108474
c = 21770231043448943684137443679409353766384859347908158264676803189707943062309013723698099073818477179441395009450511276043831958306355425252049047563947202180509717848175083113955255931885159933086221453965914552773593606054520151827862155643433544585058451821992566091775233163599161774796561236063625305050

e1 = 12886657667389660800780796462970504910193928992888518978200029826975978624718627799215564700096007849924866627154987365059524315097631111242449314835868137
e2 = 12110586673991788415780355139635579057920926864887110308343229256046868242179445444897790171351302575188607117081580121488253540215781625598048021161675697

c1=pow(c1,e2,N)
c2=pow(c2,e1,N)

x=e1*e2
xx=c2*pow(3,x,N)-c1*pow(2,x,N)
q=gcd(N,xx)

assert q.bit_length()==512 and isPrime(q) and N%q==0

e = 65537
print(long_to_bytes(pow(c,inverse(e,q-1),q)))
#b'moectf{Sh4!!0w_deeb4t0_P01arnova}'

More_secure_RSA

from Crypto.Util.number import *

flag = b'moectf{xxxxxxxxxxxxxxxxx}'


m = bytes_to_long(flag)
p = getPrime(1024)
q = getPrime(1024)
n = p * q 
e = 0x10001
c = pow(m, e, n)
print(f'c = {c}')
print(f'n = {n}')

'''
Oh,it isn't secure enough!
'''
r = getPrime(1024)
n = n * r
c = pow(m, e, n)
print(f'C = {c}')
print(f'N = {n}')

无语题

\(n=p*q,N=p*q*r\\ r=\frac{N}{n}\\\)

r的位数够多,直接解密就好了

from Crypto.Util.number import *
c = 12992001402636687796268040906463852467529970619872166160007439409443075922491126428847990768804065656732371491774347799153093983118784555645908829567829548859716413703103209412482479508343241998746249393768508777622820076455330613128741381912099938105655018512573026861940845244466234378454245880629342180767100764598827416092526417994583641312226881576127632370028945947135323079587274787414572359073029332698851987672702157745794918609888672070493920551556186777642058518490585668611348975669471428437362746100320309846155934102756433753034162932191229328675448044938003423750406476228868496511462133634606503693079
n = 16760451201391024696418913179234861888113832949815649025201341186309388740780898642590379902259593220641452627925947802309781199156988046583854929589247527084026680464342103254634748964055033978328252761138909542146887482496813497896976832003216423447393810177016885992747522928136591835072195940398326424124029565251687167288485208146954678847038593953469848332815562187712001459140478020493313651426887636649268670397448218362549694265319848881027371779537447178555467759075683890711378208297971106626715743420508210599451447691532788685271412002723151323393995544873109062325826624960729007816102008198301645376867


C = 1227033973455439811038965425016278272592822512256148222404772464092642222302372689559402052996223110030680007093325025949747279355588869610656002059632685923872583886766517117583919384724629204452792737574445503481745695471566288752636639781636328540996436873887919128841538555313423836184797745537334236330889208413647074397092468650216303253820651869085588312638684722811238160039030594617522353067149762052873350299600889103069287265886917090425220904041840138118263873905802974197870859876987498993203027783705816687972808545961406313020500064095748870911561417904189058228917692021384088878397661756664374001122513267695267328164638124063984860445614300596622724681078873949436838102653185753255893379061574117715898417467680511056057317389854185497208849779847977169612242457941087161796645858881075586042016211743804958051233958262543770583176092221108309442538853893897999632683991081144231262128099816782478630830512
N = 1582486998399823540384313363363200260039711250093373548450892400684356890467422451159815746483347199068277830442685312502502514973605405506156013209395631708510855837597653498237290013890476973370263029834010665311042146273467094659451409034794827522542915103958741659248650774670557720668659089460310790788084368196624348469099001192897822358856214600885522908210687134137858300443670196386746010492684253036113022895437366747816728740885167967611021884779088402351311559013670949736441410139393856449468509407623330301946032314939458008738468741010360957434872591481558393042769373898724673597908686260890901656655294366875485821714239821243979564573095617073080807533166477233759321906588148907331569823186970816432053078415316559827307902239918504432915818595223579467402557885923581022810437311450172587275470923899187494633883841322542969792396699601487817033616266657366148353065324836976610554682254923012474470450197
e = 0x10001

r=N//n
print(long_to_bytes(pow(C,inverse(e,r-1),r)))
#b'moectf{th3_a1g3br4_is_s0_m@gic!}'

ezlegendre(更新附件后)

from sympy import *
from Crypto.Util.number import *

p = getPrime(128)
a = randprime(2, p)

FLAG = b'moectf{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}'


def encrypt_flag(flag):
    ciphertext = []
    plaintext = ''.join([bin(i)[2:].zfill(8) for i in flag])
    for bit in plaintext:
        e = randprime(2, p)
        n = pow(int(bit) + a, e , p)
        ciphertext.append(n)
    return ciphertext

print(encrypt_flag(FLAG))

这题有点坑的点就是需要先判断出a和a+1对于p的雅可比符号是不同的,然后才能利用。

这里e是负数,a对于p的雅可比符号为-1,所以可以用的。

\((\frac{a^e}{p})=(\frac{a}{p})^e=(-1)^e=-1\)

from Crypto.Util.number import *
from gmpy2 import jacobi
p = 303597842163255391032954159827039706827
a = 34032839867482535877794289018590990371
c=[
    278121435714344315140568219459348432240, 122382422611852957172920716982592319058, 191849618185577692976529819600455462899, 94093446512724714011050732403953711672, 201558180013426239467911190374373975458, 68492033218601874497788216187574770779, 126947642955989000352009944664122898350, 219437945679126072290321638679586528971, 10408701004947909240690738287845627083, 219535988722666848383982192122753961, 173567637131203826362373646044183699942, 80338874032631996985988465309690317981, 61648326003245372053550369002454592176, 277054378705807456129952597025123788853, 17470857904503332214835106820566514388, 107319431827283329450772973114594535432, 238441423134995169136195506348909981918, 99883768658373018345315220015462465736, 188411315575174906660227928060309276647, 295943321241733900048293164549062087749, 262338278682686249081320491433984960912, 22801563060010960126532333242621361398, 36078000835066266368898887303720772866, 247425961449456125528957438120145449797, 843438089399946244829648514213686381, 134335534828960937622820717215822744145, 74167533116771086420478022805099354924, 249545124784428362766858349552876226287, 37282715721530125580150140869828301122, 196898478251078084893324399909636605522, 238696815190757698227115893728186526132, 299823696269712032566096751491934189084, 36767842703053676220422513310147909442, 281632109692842887259013724387076511623, 205224361514529735350420756653899454354, 129596988754151892987950536398173236050, 97446545236373291551224026108880226180, 14756086145599449889630210375543256004, 286168982698537894139229515711563677530, 100213185917356165383902831965625948491, 268158998117979449824644211372962370753, 264445941122079798432485452672458533870, 87798213581165493463875527911737074678, 131092115794704283915645135973964447801, 164706020771920540681638256590936188046, 178911145710348095185845690896985420147, 154776411353263771717768237918437437524, 260700611701259748940616668959555019434, 222035631087536380654643071679210307962, 281292430628313502184158157303993732703, 24585161817233257375093541076165757776, 269816384363209013058085915818661743171, 39975571110634682056180877801094873602, 125235869385356820424712474803526156473, 218090799597950517977618266111343968738, 144927096680470512196610409630841999788, 213811208492716237073777701143156745108, 64650890972496600196147221913475681291, 302694535366090904732833802133573214043, 214939649183312746702067838266793720455, 219122905927283854730628133811860801459, 224882607595640234803004206355378578645, 260797062521664439666117613111279885285, 279805661574982797810336125346375782066, 147173814739967617543091047462951522968, 23908277835281045050455945166237585493, 186338363482466926309454195056482648936, 295140548360506354817984847059061185817, 151948366859968493761034274719548683660, 96829048650546562162402357888582895187, 61129603762762161772506800496463804206, 83474322431616849774020088719454672415, 25094865151197136947956010155927090038, 86284568910378075382309315924388555908, 269311313874077441782483719283243368999, 293865655623484061732669067594899514872, 42618744258317592068586041005421369378, 54330626035773013687614797098120791595, 147903584483139198945881545544727290390, 290219451327796902155034830296135328101, 147951591390019765447087623264411247959, 176721307425594106045985172455880551666, 10617017342351249793850566048327751981, 166002147246002788729535202156354835048, 43653265786517886972591512103899543742, 191250321143079662898769478274249620839, 142288830015965036385306900781029447609, 231943053864301712428957240550789860578, 259705854206260213018172677443232515015, 42547692646223561211915772930251024103, 210863755365631055277867177762462471179, 140297326776889591830655052829600610449, 136970598261461830690726521708413303997, 93221970399798040564077738881047391445, 192314170920206027886439562261321846026, 95904582457122325051140875987053990027, 158334009503860664724416914265160737388, 134039922705083767606698907224295596883, 7789601161004867293103537392246577269, 261069289329878459425835380641261840913, 123743427894205417735664872035238090896, 20126583572929979071576315733108811761, 5317214299018099740195727361345674110, 68965882674411789667953455991785095270, 235934145208367401015357242228361016868, 250709310980093244562698210062174570956, 167048130489822745377277729681835553856, 122439593796334321806299678109589886368, 117953800124952553873241816859976377866, 226311466875372429157352019491582796620, 301401080214561977683439914412806833619, 255816105091394723475431389696875064495, 73243049441397892506665249226961409560, 226985189100195407227032930008331832009, 164462051705780513134747720427967016844, 97905180778488273557095248936896399883, 40737879120410802220891174679005117779, 180413920169781019749877067396006212488, 171309368917976988181007951396904157090, 215065878665354148046787050342635722874, 54225964222741166664978354789209176721, 179980445108969868669560591527220171967, 39118880593034932654127449293138635964, 170210538859699997092506207353260760212, 62152643864232748107111075535730424573, 28285579676042878568229909932560645217, 69823876778445954036922428013285910904, 170371231064701443428318684885998283021, 211884923965526285445904695039560930451, 2912793651373467597058997684762696593, 220544861190999177045275484705781090327, 142755270297166955179253470066788794096, 264271123927382232040584192781810655563, 214901195876112453126242978678182365781, 252916600207311996808457367909175218824, 176399700725319294248909617737135018444, 230677646264271256129104604724615560658, 1568101696521094800575010545520002520, 276644650735844694794889591823343917140, 185355461344975191330786362319126511681, 248497269558037476989199286642120676823, 27426372552503547932146407600438894266, 99885839446999373024614710052031031159, 238693364649026611386487480573211208980, 27047849084544903200283111147329657123, 261687609401872239323715016608713989139, 34926503987070847956303036393611830590, 252495954285655595492775877967398282722, 249358827602419141539353237669905281246, 42551212101869966935955269842854722856, 286527336123436427709115043975536071462, 158097411156207320921055042509886995091, 40982984899524424348979403377331335675, 87268254405858939730919659372073314983, 142920872841164853694746048293715385493, 280344634952903421792629929689092857993, 203584314487374069738101729666435007339, 76747904284507590577908045394001414841, 18608573158088521401404614102481693137, 104158289118605398449367221892619783009, 182616719368573751169836443225324741716, 272025723760783252166092979911587562064, 24194069309604403496494752448487752613, 71973842397785917741048132725314885345, 281558046604363121112749722271741416764, 66965324704079734796576428718112513855, 105222756356650324548621319241035836840, 331654051401420900830576011369146182, 131087815164777263900650262777429797113, 76104729920151139813274463849368737612, 163253554841934325278065946152769269296, 35973933431510942249046321254376084104, 223355354158871484030430212060934655984, 181704973473887713398031933516341967465, 131391458395622565487686089688656869743, 153029062510158353978320224242258979076, 75598349867958834632866616947240059419, 107656133091853571710502064573530657194, 261653899003034450454605322537555204702, 102387069931966536076616272953425585051, 174654548539988861301269811985320013260, 30731762585661721683653192240732246059, 265493340795853624586170054917042208660, 174818040730242275465453007894471517233, 99514915046145707535310601810631334278, 133978892607644700903700803642408771370, 216019770199630171637325931783378096100, 76687884966028369399497157007109898467, 262185741950606001987209986574269562289, 101935410844521914696784339882721918198, 85956270718878931834010975962772401589, 117578315837774870077915813512746446219, 209811226703488479967593762805568394383, 85782228978690599612110880989543246041, 234993402267259336147096170367513324439, 158487299348452041021565296682698871789, 159701431055714867184644360639841355076, 109022557288733938098734847159477770521, 20764822884655633017647117775843651332, 144987524936939260617020678038224835887, 214906746504968333094519539609226540495, 61852186870193663367998110214331582115, 90175894032076080713807606548780168998, 283504071501037047650569090140982777586, 267695305479884628857258564337611106120, 2466175482923380874813569827625743835, 62561740902965346823256447383892272796, 181458673990444296212252831090106274182, 151903421483215372136947284355251617709, 19545903652854510304023406921387221130, 219205004027218279279153442572018305650, 62495663621315535552427938857863551873, 12365469869484359722316573851483855865, 84444120685499458796249283893323932282, 240719245204462516267560756675192129462, 27868242791206675092288978266113368469, 231956104988320170956546781095814860314, 238410591787987745803829175586952288627, 290649141309468101840354611586699479851, 288298044918505512172272603794059992911, 43375655853069820305921366762777897508, 195308577786654489057887409352840304641, 184459971400898842809886506207633536394, 255884612697066296714973816950917234211, 8695922085804648269560669225439485137, 109407350389195091443836128149623969417, 40151058765649465408124869078260007620, 125484946058191366826510549493690011718, 71132588066103752922321942940739808864, 74434669478187680319595294456652807097, 187368213679294937718535073296853726111, 63461505676143678393259420949793811831, 131619805472714703711458729455838994067, 8579657158619864010437706463902003097, 60626278761876782233388469543817973673, 44776499706241603722632560896220653186, 257249861781237389988455384617803171877, 161899873165011719282095749671993720527, 73303482092538159761390536102771615311, 141674253732456103774983358188317473860, 112299149158347774069079224861237069975, 192409969047313867540459549167233638120, 52560717143548208264188844553309600513, 209294007943747095607573416682772182613, 65285862009539442533024037477398617382, 141465096635701758351979378177631042196, 282970656853503001128091562858564344839, 50475483578642585644452991078499278745, 162546597698227455939743094437394415689, 65258447920153625609456176138520078583, 25184730952052088803921023041299838584, 228883100940853988548836641050823478387, 234342509561041384559923481191578502671, 96929129863331626375704681481278825323, 288533470498072097357398960101692503873, 202238020435442160571930572760188491021, 179010548891454398845389500871076122861, 210509821764943794358893224681677583929, 301357944197101288505771002301759006254, 188933290023352627523422420332593360537, 207946655777875200521742190622482472884, 288626263488145443150622420747070805416, 75616301779108425588545170038742534166, 58163857263381687168244101022135667109, 297006021514663344215599115965804102114, 297690420826548736122127126645053452341, 88307045391242971429880119414942510712, 186427606153958359494215188169120285788, 135488686276533521058776859854524444361, 185380054960856211260651416683468161990, 175033658667416561573078028845860911744, 223026004671602541191897755812121342354, 34657268786986063209312902409995458857, 120560332690000675303295481174067849230, 55304621833927249516093996383526467671, 111480233798478730015825495041130765708, 188996716801525995463705449722399676888, 276300230605454487705048192796463035731, 195951365841304132244984630163178946841, 97383655947416522972353051984313703380, 94486945760999630041197414137963583839, 180706938513681126017333618518691884990, 291355503207799224380050183085704824037, 69034413486375685936282884707402207337, 147750870458026934714106830614187010708, 45030500748522416863096615057804736553, 242760053973560804002707125041520857401, 78549841097746795170488790352479728712, 2356186555504071026416878904180857750, 250486437623828232647064146324392061051, 23443836455198610186212360005846025976, 174557226633145985326629017377610499133, 105578481831185315088267357915446186040, 275620780071666328887795273613981325091, 23435505408737317601794562472269448966, 153209223406380813663608757935808571040, 298537417505667302508269715871007454162, 203833907122687718347615710181705388877, 41923370405573382737900061813058979798, 3762696947926387653032627637114050038, 201362054098012734707571348865729525585, 285561801443127226417656620776228615886, 111526376057659222252771678197929357387, 203857473647840873587593099562928738804, 44500972779851392967974092230683443589, 131565609415497588649207556985146740667, 118140388348838985266223643241117982200, 151449885527204880099343472664885565851, 296392921256617994387220911796693904909, 171323803851876663161606688343678019752, 77152982746512263077542395226111426871, 71648764903315646849225859605038798241, 204032734481806785543119754456569617316, 6308687907566364067313782129902290691, 16601010504475415688487155708691097587, 267844409827567109183739120606590016153, 8224746302136608660764206696943998066, 66759882079234093195284745682061177129, 246382951504754280882643835151081337286, 255668159720160142170457715248631352728, 198682585307670767869381177003851088434, 52435298055396076040371814840062860322, 71487031168170283085378067681578926209, 19270201008106231446848331516948751837, 259975200953378762173082382130139147342, 100957428421542421187997144087873975651, 208596806512779765020431672051552927799, 299145970783704112359526450087000033589, 150947534399996219237186223933189906692, 2048564430495506099844799218948689248, 18962488382754079143174369765373573160, 123031997265327646442638576943887737076, 244982544573374061178705105734141424990, 146410849043938910996544914770892579969, 223289253099676841267315311685506771609, 51374350072145272462874563304717832675, 11071799523780604861063183113721965515, 64879815349665030137608387728274669513, 80407660651138778640313857555610913997, 303240361297474032656368918727922343524, 103535171867293830164396688627880762056, 80560992291681297484967629700766125368, 143230791823232014720768325847406122476, 188716605362804777650654549500430035344, 232870220205325961834389425482865329315, 283584919111555062850512413920721407255, 206566027046056486360456937040463884619, 157265544558229360994066706355140059167, 234540100059557817987307855523008271441, 145080729935010940836509908225154438654, 87632901547252991486640361323948527297, 132851295075144433057295220850764336697, 119332580967710872282556206817561230364, 252662535367310697404410284791596079390, 116953597995893914045234747272641030589, 100249498080127826743176896590140549012, 136127222991007877469608037092253387587, 293872159333237281344632727438901916796, 188380258232793584033919525452891729603, 1610116068556601814921533488550773010, 227538093179017809788576278302184723209, 96083211912155805281570727244009758189, 177565192075026414675108774674272650977, 48610376097473152433617435307712235835, 247706157308906487216795222963091222950, 158089460554439410339817265377357657075, 242596743543458727108836420358578527964, 157838486547678450498998359338995593594, 154936428786673098370270244313756793764, 230069001282099253337070315838992422706, 302203905412042965194022309363722872023, 278925578180003228386990239779184911424, 2121847168422140085785053284950978779, 88186566913792352545205577594300112005, 127051055548524716972172930848069016819, 216775577660712694343189516378309335187, 44934779747684486400910901018161470888, 32429597712898788634301884219187226083, 219683174528279300995710495669083670544, 37001671152735870067433052249003677244, 40408367335919429215031155701333780256, 156957056705864208022145617831060134907, 180077610045061934161783737112285900966, 59357544819520045255625797086421901884, 77751400794807935281264495346525107329, 4517615764752715802675887411287287137, 76319782726782483955139757169428276003, 176009402215469456144386392247781430661, 283055695252017869386094188584670242363, 20001716567499724882317501875143788088, 125228382132280749989067609697418628387, 144053090751393640875176862167012247830, 15289106046221987660093620422889539867, 111243866573605033251079958638430165633, 169264885994758018612038619809803723688, 11895954311759483419234457833286931577, 273147053963507607445612310063799123998, 158981773284803069491507978382595811562, 41293513794446810141896116395025053234, 57441237860743029006005815967510568612, 109171476551418034153338841133917497633, 136539712287056106151501004438585146777, 278918550892367788720071091355436733468, 211360251223022250021398148918837686812, 254351242496347083009146404917085951637, 130260153203964833202474997491055897705, 221930288825889900517852991745469270910, 66354211799382156899053592476719001842, 127898620670768976254134750731374490934, 298131830425274848646460016809595859328, 132109510144911727511061804395381822418, 210917766469026421985352121201196497206, 5441137715689271309917542693016936841, 209516950406881264617228336887254107528, 92275151703152148383106907311559718841, 46255650973652148247469464088017660080, 182628529221607295465655096378164148336, 52574278547120304143820897608762444985, 63698472804719856407197390836793525437, 30457182690865024857724004613999433676, 212073418196280214618461610817423630022, 48875930775858981513092672396243080640, 113234797533868946026347891158142991388, 256534108458875318962058222544020064164, 22522715662428558833985333846937440705, 97553118958308509177643330175409499003, 197088081433425221073434635573357125592, 157303116668734020456228309942188293059, 110316346669278795114546305726864504681, 228887397917708007004920589862367347873, 112210930213921962308944716344585917343, 95017760786235266842788931502689331157, 303479014347753799316861720146531596843, 138677197920058856282155251074088437081, 285912176726299387362893467150449209426, 120309832759140713296686339140142433386, 279125897926861811239250830750932241600, 289502053647872994218190050825294169535, 262459212837236162171047720358005836712, 290390838897912466575239533978002826151, 292988850197951752250595007039860868400, 34796135808311610468205608686622819504, 25206338413385638687826160218013868658, 42180804482932648992176529097078580055, 195897225052351816559125785179252565465, 290060760535408066224831756224248708027, 34243626514368402883316460494646065629, 159497726968729366867935528734367549832, 267785772871046662107247674801793846921, 47342328853090920958565777290912999560, 194980176549393239742230551297786993434, 88020247887557921707284362381274951852, 255474100333005567974457204812640809071, 93324791124684170744053910877870176609, 69542826141091170218040988642070014011, 188678529221313094426441439309063681864, 56030802691247887446204447769438570825, 74312207153349149422500961216106557393, 153811406554673020809393530896156460494, 130232956128662318657579623819323546361, 241587755919930468705435097001858194189, 150548598672513907492388638742866339038, 38780469811591978249139697733603217652, 237554030153815380781978075720171312418, 96541634878634946114738393982914693394, 83284071476491638125716901346418260661, 277535192833115492238855935055373371297, 92291115416977028401374199691398676627, 105634075531674200869064066234662065605, 59669321288506854711632528171527160495, 24913178886798791108798737682436779604, 191902245938756063865405758957515936934, 200833770402179506644143905670947994664, 249327029439265065126080906281744759655, 2368715218056973901783211260781833927, 133209645820509536502329231321782644514, 170083361139958757944996287868734988169, 143242266754832252556264383809361085258, 198438133508477313319510861550461456953, 226416574016152349355240811564666677855, 131995850810926550122710727062184985075, 206211971624338783828953817981719254101, 95022339713176475801874420969255633409, 39239785273544046574575511790952158726, 6761950061835300419279903725369635970, 160849355761964483498641169767552240859, 44129081383649229398785011378026849128, 116611486899507912253396257166983831123, 102748760887182142877957834312659347601, 100973668783270797012352094429175531207, 110548564207426762905750742091610942634, 205424582078496700107783237952155124442, 210932790939110827079725957948996247757, 54413304958149902897514912130730392489, 181315803651356180100745517014898850424, 183346938138867395962624263310328788228, 133507835720650939452036529283981720094, 244220649646693249242542702657146329679, 111814540087048948955999016117121133729, 210757262617434713384638061648414714521, 31712005436857719771604404352654183712, 299210790483067037892753875410776716305, 34216439939230284515095120240039231491, 246820219620854547856488049434101568744, 298588211282375015522910461809769779222, 53320103067319149790078933423751044737, 164977173816081040725650999609390274279, 234782977255751828939911143180631329578, 61521250269407451751766565186333346163, 119529895182262920689181379893081203421, 154588465395872896210615516764102943961, 153034255402211966905777978896125271527, 65497510688725487475002809757533544579, 76824114145168270682129892469858568031, 218064880554787781811938382300930885801, 196850060586188141836799779247809406205, 176023892018381269394229104598502170110, 32491776807255207889633110137157036238, 41150198830446315717651890670848632754, 260753023840843193587871227195221789744, 48345408122882987831052823644867513356, 80045935233531979816083287928071697883, 131878104259519592871955471048058374000, 15534379538690707223440448056318568055, 131291412522855581131329717355299310716, 37018675243998552749630837151597269431, 144343493968520204610097930388908478903, 67236444178494959708570043908346657722, 102574100831305499879105427279131095784, 249069309513964056714882166119752611668, 210718130986716991560768592011623825976, 266242407402824082344585571101593909650, 205203132247422842477137158586071965100, 301157372202750742637385626243753030679, 40886620741595313792996852647181029560, 253361171396328884567373946949359324229, 50071128101197582041162516700015376269, 106002417001877546867386840932652850816, 224086864980106045542532841236299648038, 42103921294151508500634063253613482845, 49777138159264482913170680298952908154, 24324534484842395819609478778764950811, 204106593629836179932302789646808274058, 266707066043760482642609614924857456238, 18723835069315957900598472598907945204, 244338819469013923747256697307964210342, 36296287172854997655950896217230267111, 292888671179451539882069138267865661448, 287111415651274690627399445990831389362, 79940439572496625318602146625920961720, 288270505176661814341807462681727466925, 153921178962139214138689743179633342125, 263564317934507756965522450042219801757, 197993323684501153884855839599466707355, 72143993205715719344183507132882267579, 67511075584002491895239101559049103979, 231396344630318648781207380069016790960, 268490084177254392405211695854127631350, 45968181401712207064942095991325993181, 34472329776995578971329318400545600788, 112967316661320871429337739209994987784, 209508577387521479468956337084132598710, 194445696189141465862938111222574992064, 229942079198360020568341753187100646148, 47944382795398541172186729027517882654, 54806201653083974379270761512143387910, 93457347627015900562505045196097224001, 152033139738914238723733340538181549419, 123719026823969669345162603978875451754, 154704533151410142607151617227929824563, 32428281285686815618553795197210513625, 265229864831280807254743597731258298440, 14904705423314872103792141735779112532, 177442398230615511669857060547212895616, 144918716871520627851549439448066637518, 203019416536984157536348865479415073573, 288452420706913930307744155709559750006, 282516471994395201735206793889605510595, 150722332251745138694381051866105655391, 234504581837296595003379465512031425988, 44178766618576668748878202507789103195, 217129489675072754441642067295058817201, 245087939287551829934600756568137757979, 240954534396950014938672406581264782638
    ]


bit0=jacobi(a,p)    # -1
bit1=jacobi(a+1,p)  # 1


flag=""
for i in c:
    if jacobi(i,p)==bit0:
        flag+="0"
    else:
        flag+="1"
print(long_to_bytes(int(flag,2)))
#b'moectf{minus_one_1s_n0t_qu4dr4tic_r4sidu4_when_p_mod_f0ur_equ41_to_thr33}'

new_systen

from random import randint
from Crypto.Util.number import getPrime,bytes_to_long 


flag = b'moectf{???????????????}'
gift = bytes_to_long(flag)


def parametergenerate():
    q = getPrime(256)
    gift1 = randint(1, q)
    gift2 = (gift - gift1) % q
    x =  randint(1, q)
    assert gift == (gift1 + gift2) % q
    return q , x , gift1, gift2


def encrypt(m , q , x):
    a = randint(1, q)
    c = (a*x + m) % q
    return [a , c]


q , x , gift1 , gift2 = parametergenerate()
print(encrypt(gift1 , q , x))
print(encrypt(gift2 , q , x))
print(encrypt(gift , q , x))
print(f'q = {q}')

推导一下,先求出x,然后gift就可以求出来啦:

\[有:g=g_1+g_2 \mod q\\ c_1=a_1*x+g_1 \mod q\\ c_2=a_2*x+g_2 \mod q\\ c=a*x+g=a*x+g_1+g_2\mod q\\ 可得:c=a*x+c_1-a_1*x+c_2-a_2*x\\ c-c_1-c_2=(a-a_1-a_2)*x \mod q\\ \]

from Crypto.Util.number import *
a1,c1=[48152794364522745851371693618734308982941622286593286738834529420565211572487, 21052760152946883017126800753094180159601684210961525956716021776156447417961]
a2,c2=[48649737427609115586886970515713274413023152700099032993736004585718157300141, 6060718815088072976566240336428486321776540407635735983986746493811330309844]
a,c=[30099883325957937700435284907440664781247503171217717818782838808179889651361, 85333708281128255260940125642017184300901184334842582132090488518099650581761]
q = 105482865285555225519947662900872028851795846950902311343782163147659668129411

x=(c-c1-c2)*inverse(a-a1-a2,q)%q

g=(c-a*x)%q
print(long_to_bytes(g))
#b'moectf{gift_1s_present}'

RSA_revenge

from Crypto.Util.number import getPrime, isPrime, bytes_to_long
from secret import flag


def emirp(x):
    y = 0
    while x !=0:
        y = y*2 + x%2
        x = x//2
    return y


while True:
    p = getPrime(512)
    q = emirp(p)
    if isPrime(q):
        break

n = p*q
e = 65537
m = bytes_to_long(flag)
c = pow(m,e,n)
print(f"{n = }")
print(f"{c = }")

在La佬的博客里有RSA | Lazzaro (lazzzaro.github.io),搜索emirp就可以看到了

直接用脚本了,我自己剪枝不出来。

from Crypto.Util.number import *
from gmpy2 import *
n = 141326884939079067429645084585831428717383389026212274986490638181168709713585245213459139281395768330637635670530286514361666351728405851224861268366256203851725349214834643460959210675733248662738509224865058748116797242931605149244469367508052164539306170883496415576116236739853057847265650027628600443901
c = 47886145637416465474967586561554275347396273686722042112754589742652411190694422563845157055397690806283389102421131949492150512820301748529122456307491407924640312270962219946993529007414812671985960186335307490596107298906467618684990500775058344576523751336171093010950665199612378376864378029545530793597
e=65537

x=2	# q相对p是几进制下的反转
leak_bits = 512
def t(p,q,k):
    if k==leak_bits//2:
        if p*q==n:
            print(p,q)
            print(long_to_bytes(pow(c,invert(e,(p-1)*(q-1)),n)))
            exit()
        return
    for i in range(x):
        for j in range(x):
            p1=p+i*(x**k)+j*(x**(leak_bits-1-k))
            q1=q+j*(x**k)+i*(x**(leak_bits-1-k))
            if p1*q1>n:
                continue
            if (p1+(x**(leak_bits-1-k)))*(q1+(x**(leak_bits-1-k)))<n:
                continue
            if ((p1*q1)%(2**(k+1)))!=(n%(2**(k+1))):
                continue
            t(p1,q1,k+1)

for i in range(x):
    t(i*(x**(leak_bits//2)),i*(x**(leak_bits//2)),0)

#b'moectf{WA!y0u@er***g00((d))}'

Week3

One more bit

pk = (134133840507194879124722303971806829214527933948661780641814514330769296658351734941972795427559665538634298343171712895678689928571804399278111582425131730887340959438180029645070353394212857682708370490223871309129948337487286534021548834043845658248447393803949524601871557448883163646364233913283438778267, 83710839781828547042000099822479827455150839630087752081720660846682103437904198705287610613170124755238284685618099812447852915349294538670732128599161636818193216409714024856708796982283165572768164303554014943361769803463110874733906162673305654979036416246224609509772196787570627778347908006266889151871)
ciphertext = 73228838248853753695300650089851103866994923279710500065528688046732360241259421633583786512765328703209553157156700672911490451923782130514110796280837233714066799071157393374064802513078944766577262159955593050786044845920732282816349811296561340376541162788570190578690333343882441362690328344037119622750

e较大,推测出d较小,直接套BonehDurfee脚本就好了,参数值都不用考虑,直接套。

from __future__ import print_function
import time

############################################
# Config
##########################################

"""
Setting debug to true will display more informations
about the lattice, the bounds, the vectors...
"""
debug = True

"""
Setting strict to true will stop the algorithm (and
return (-1, -1)) if we don't have a correct
upperbound on the determinant. Note that this
doesn't necesseraly mean that no solutions
will be found since the theoretical upperbound is
usualy far away from actual results. That is why
you should probably use `strict = False`
"""
strict = False

"""
This is experimental, but has provided remarkable results
so far. It tries to reduce the lattice as much as it can
while keeping its efficiency. I see no reason not to use
this option, but if things don't work, you should try
disabling it
"""
helpful_only = True
dimension_min = 7 # stop removing if lattice reaches that dimension

############################################
# Functions
##########################################

# display stats on helpful vectors
def helpful_vectors(BB, modulus):
    nothelpful = 0
    for ii in range(BB.dimensions()[0]):
        if BB[ii,ii] >= modulus:
            nothelpful += 1

    print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")

# display matrix picture with 0 and X
def matrix_overview(BB, bound):
    for ii in range(BB.dimensions()[0]):
        a = ('%02d ' % ii)
        for jj in range(BB.dimensions()[1]):
            a += '0' if BB[ii,jj] == 0 else 'X'
            if BB.dimensions()[0] < 60:
                a += ' '
        if BB[ii, ii] >= bound:
            a += '~'
        print(a)

# tries to remove unhelpful vectors
# we start at current = n-1 (last vector)
def remove_unhelpful(BB, monomials, bound, current):
    # end of our recursive function
    if current == -1 or BB.dimensions()[0] <= dimension_min:
        return BB

    # we start by checking from the end
    for ii in range(current, -1, -1):
        # if it is unhelpful:
        if BB[ii, ii] >= bound:
            affected_vectors = 0
            affected_vector_index = 0
            # let's check if it affects other vectors
            for jj in range(ii + 1, BB.dimensions()[0]):
                # if another vector is affected:
                # we increase the count
                if BB[jj, ii] != 0:
                    affected_vectors += 1
                    affected_vector_index = jj

            # level:0
            # if no other vectors end up affected
            # we remove it
            if affected_vectors == 0:
                print("* removing unhelpful vector", ii)
                BB = BB.delete_columns([ii])
                BB = BB.delete_rows([ii])
                monomials.pop(ii)
                BB = remove_unhelpful(BB, monomials, bound, ii-1)
                return BB

            # level:1
            # if just one was affected we check
            # if it is affecting someone else
            elif affected_vectors == 1:
                affected_deeper = True
                for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
                    # if it is affecting even one vector
                    # we give up on this one
                    if BB[kk, affected_vector_index] != 0:
                        affected_deeper = False
                # remove both it if no other vector was affected and
                # this helpful vector is not helpful enough
                # compared to our unhelpful one
                if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):
                    print("* removing unhelpful vectors", ii, "and", affected_vector_index)
                    BB = BB.delete_columns([affected_vector_index, ii])
                    BB = BB.delete_rows([affected_vector_index, ii])
                    monomials.pop(affected_vector_index)
                    monomials.pop(ii)
                    BB = remove_unhelpful(BB, monomials, bound, ii-1)
                    return BB
    # nothing happened
    return BB

""" 
Returns:
* 0,0   if it fails
* -1,-1 if `strict=true`, and determinant doesn't bound
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):
    """
    Boneh and Durfee revisited by Herrmann and May
    
    finds a solution if:
    * d < N^delta
    * |x| < e^delta
    * |y| < e^0.5
    whenever delta < 1 - sqrt(2)/2 ~ 0.292
    """

    # substitution (Herrman and May)
    PR.<u, x, y> = PolynomialRing(ZZ)
    Q = PR.quotient(x*y + 1 - u) # u = xy + 1
    polZ = Q(pol).lift()

    UU = XX*YY + 1

    # x-shifts
    gg = []
    for kk in range(mm + 1):
        for ii in range(mm - kk + 1):
            xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk
            gg.append(xshift)
    gg.sort()

    # x-shifts list of monomials
    monomials = []
    for polynomial in gg:
        for monomial in polynomial.monomials():
            if monomial not in monomials:
                monomials.append(monomial)
    monomials.sort()
    
    # y-shifts (selected by Herrman and May)
    for jj in range(1, tt + 1):
        for kk in range(floor(mm/tt) * jj, mm + 1):
            yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)
            yshift = Q(yshift).lift()
            gg.append(yshift) # substitution
    
    # y-shifts list of monomials
    for jj in range(1, tt + 1):
        for kk in range(floor(mm/tt) * jj, mm + 1):
            monomials.append(u^kk * y^jj)

    # construct lattice B
    nn = len(monomials)
    BB = Matrix(ZZ, nn)
    for ii in range(nn):
        BB[ii, 0] = gg[ii](0, 0, 0)
        for jj in range(1, ii + 1):
            if monomials[jj] in gg[ii].monomials():
                BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)

    # Prototype to reduce the lattice
    if helpful_only:
        # automatically remove
        BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)
        # reset dimension
        nn = BB.dimensions()[0]
        if nn == 0:
            print("failure")
            return 0,0

    # check if vectors are helpful
    if debug:
        helpful_vectors(BB, modulus^mm)
    
    # check if determinant is correctly bounded
    det = BB.det()
    bound = modulus^(mm*nn)
    if det >= bound:
        print("We do not have det < bound. Solutions might not be found.")
        print("Try with highers m and t.")
        if debug:
            diff = (log(det) - log(bound)) / log(2)
            print("size det(L) - size e^(m*n) = ", floor(diff))
        if strict:
            return -1, -1
    else:
        print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")

    # display the lattice basis
    if debug:
        matrix_overview(BB, modulus^mm)

    # LLL
    if debug:
        print("optimizing basis of the lattice via LLL, this can take a long time")

    BB = BB.LLL()

    if debug:
        print("LLL is done!")

    # transform vector i & j -> polynomials 1 & 2
    if debug:
        print("looking for independent vectors in the lattice")
    found_polynomials = False
    
    for pol1_idx in range(nn - 1):
        for pol2_idx in range(pol1_idx + 1, nn):
            # for i and j, create the two polynomials
            PR.<w,z> = PolynomialRing(ZZ)
            pol1 = pol2 = 0
            for jj in range(nn):
                pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)
                pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)

            # resultant
            PR.<q> = PolynomialRing(ZZ)
            rr = pol1.resultant(pol2)

            # are these good polynomials?
            if rr.is_zero() or rr.monomials() == [1]:
                continue
            else:
                print("found them, using vectors", pol1_idx, "and", pol2_idx)
                found_polynomials = True
                break
        if found_polynomials:
            break

    if not found_polynomials:
        print("no independant vectors could be found. This should very rarely happen...")
        return 0, 0
    
    rr = rr(q, q)

    # solutions
    soly = rr.roots()

    if len(soly) == 0:
        print("Your prediction (delta) is too small")
        return 0, 0

    soly = soly[0][0]
    ss = pol1(q, soly)
    solx = ss.roots()[0][0]

    #
    return solx, soly

def attack(N, e, factor_bit_length, factors, delta=0.25, m=1):
    x, y = ZZ["x", "y"].gens()
    A = N + 1
    f = x * (A + y) + 1
    X = int(RR(e) ** delta)
    Y = int(N^((factors-1)/factors))
    t = int((1 - 2 * delta) * m)
    x0, y0 = boneh_durfee(f, e, m, t, X, Y)
    z = int(f(x0, y0))
    if z % e == 0:
        phi = N +int(y0) + 1
        return phi

    return None
from Crypto.Util.number import*

n,e = (134133840507194879124722303971806829214527933948661780641814514330769296658351734941972795427559665538634298343171712895678689928571804399278111582425131730887340959438180029645070353394212857682708370490223871309129948337487286534021548834043845658248447393803949524601871557448883163646364233913283438778267, 83710839781828547042000099822479827455150839630087752081720660846682103437904198705287610613170124755238284685618099812447852915349294538670732128599161636818193216409714024856708796982283165572768164303554014943361769803463110874733906162673305654979036416246224609509772196787570627778347908006266889151871)
ciphertext = 73228838248853753695300650089851103866994923279710500065528688046732360241259421633583786512765328703209553157156700672911490451923782130514110796280837233714066799071157393374064802513078944766577262159955593050786044845920732282816349811296561340376541162788570190578690333343882441362690328344037119622750

phi=attack(n, e, 512, 2, 0.296,4)

print(long_to_bytes(int(pow(ciphertext,inverse(e,phi),n))))
#b'moectf{Ju5t_0n3_st3p_m0r3_th4n_wi3n3r_4ttack!}\x02\x02\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10'

EzMatrix

from Crypto.Util.number import *
from secret import FLAG,secrets,SECERT_T


assert len(secrets) == 16
assert FLAG == b'moectf{' + secrets + b'}'
assert len(SECERT_T) <= 127


class LFSR:
    def __init__(self):
        self._s = list(map(int,list("{:0128b}".format(bytes_to_long(secrets)))))
        for _ in range(8*len(secrets)):
            self.clock()
    
    def clock(self):
        b = self._s[0]
        c = 0
        for t in SECERT_T:c ^= self._s[t]
        self._s = self._s[1:] + [c]
        return b
    
    def stream(self, length):
        return [self.clock() for _ in range(length)]


c = LFSR()
stream = c.stream(256)
print("".join(map(str,stream))[:-5])

lfsr没有给mask,但是有大概2nbits的数据,可以使用B-M算法。

ctf-wiki中有讲我就不献丑了,直接套了脚本线性反馈移位寄存器 - LFSR - CTF Wiki (ctf-wiki.org)

key = '11111110011011010000110110100011110110110101111000101011001010110011110011000011110001101011001100000011011101110000111001100111011100010111001100111101010011000110110101011101100001010101011011101000110001111110100000011110010011010010100100000000110'

lfsr_bits=128
lost_bits=5

def pad(x):
    pad_length = lost_bits - len(x)
    return '0'*pad_length+x  
def get_key(mask,key):
    R = ""
    index = 0
    key = key[lfsr_bits-1] + key[:lfsr_bits]
    while index < lfsr_bits:
        tmp = 0
        for i in range(lfsr_bits):
            if mask >> i & 1:
                tmp = (tmp+int(key[lfsr_bits-1-i]))%2
        R = str(tmp) + R
        index += 1
        key = key[lfsr_bits-1] + str(tmp) + key[1:lfsr_bits-1]
    return int(R,2)
def get_int(x):
    m=''
    for i in range(lfsr_bits):
        m += str(x[i])
    return (int(m,2))
 
sm = []
for pad_bit in range(2**lost_bits):
    r = key+pad(bin(pad_bit)[2:])
    index = 0
    a = []
    for i in range(len(r)):
        a.append(int(r[i]))
    res = []
    for i in range(lfsr_bits):
        for j in range(lfsr_bits):
            if a[i+j]==1:
                res.append(1)
            else:
                res.append(0)
    sn = []
    for i in range(lfsr_bits):
        if a[lfsr_bits+i]==1:
            sn.append(1)
        else:
            sn.append(0)
    MS = MatrixSpace(GF(2),lfsr_bits,lfsr_bits)
    MSS = MatrixSpace(GF(2),1,lfsr_bits)
    A = MS(res)
    s = MSS(sn)
    try:
        inv = A.inverse()
    except ZeroDivisionError as e:
        continue
    mask = s*inv
    sm.append((get_key(get_int(mask[0]),key[:lfsr_bits]))) 

from Crypto.Util.number import *
for i in sm:
    print(long_to_bytes(int(i)))
#b'e4sy_lin3ar_sys!'

EzPack

from Crypto.Util.number import *
from secret import flag
import random


p = 2050446265000552948792079248541986570794560388346670845037360320379574792744856498763181701382659864976718683844252858211123523214530581897113968018397826268834076569364339813627884756499465068203125112750486486807221544715872861263738186430034771887175398652172387692870928081940083735448965507812844169983643977
assert len(flag) == 42


def encode(msg):
    return bin(bytes_to_long(msg))[2:].zfill(8*len(msg))


def genkey(len):
    sums = 0
    keys = []
    for i in range(len):
        k = random.randint(1,7777)
        x = sums + k
        keys.append(x)
        sums += x
    return keys


key = genkey(42*8)


def enc(m, keys):
    msg = encode(m)
    print(len(keys))
    print(len(msg))
    assert len(msg) == len(keys)
    s = sum((k if (int(p,2) == 1) else 1) for p, k in zip(msg, keys))
    print(msg)
    for p0,k in zip(msg,keys):
        print(int(p0,2))
    return pow(7,s,p)


cipher = enc(flag,key)

with open("output.txt", "w") as fs:
    fs.write(str(key)+'\n')
    fs.write(str(cipher))

先利用discrete_log解决离散对数问题还原出s。

然后就是背包加密,但是没有加key的时候没有乘上参数A,所以直接从大到小遍历key就可以解决了。

p = 2050446265000552948792079248541986570794560388346670845037360320379574792744856498763181701382659864976718683844252858211123523214530581897113968018397826268834076569364339813627884756499465068203125112750486486807221544715872861263738186430034771887175398652172387692870928081940083735448965507812844169983643977
key=[
    2512, 8273, 12634, 30674, 54372, 110891, 225777, 446062, 892810, 1785685, 3571708, 7147068, 14289112, 28581265, 57161832, 114326780, 228655143, 457308739, 914613209, 1829227243, 3658458827, 7316918156, 14633835709, 29267669449, 58535340274, 117070675429, 234141353537, 468282707867, 936565418057, 1873130833882, 3746261665097, 7492523334841, 14985046665026, 29970093335100, 59940186663803, 119880373334560, 239760746668580, 479521493330955, 959042986661920, 1918085973328245, 3836171946658774, 7672343893313790, 15344687786626452, 30689375573254014, 61378751146507609, 122757502293019301, 245515004586037627, 491030009172070631, 982060018344144683, 1964120036688286447, 3928240073376575459, 7856480146753153389, 15712960293506306981, 31425920587012612885, 62851841174025225788, 125703682348050445198, 251407364696100892217, 502814729392201782618, 1005629458784403568168, 2011258917568807140729, 4022517835137614281251, 8045035670275228555578, 16090071340550457117716, 32180142681100914229759, 64360285362201828463801, 128720570724403656926675, 257441141448807313850906, 514882282897614627701265, 1029764565795229255408504, 2059529131590458510813903, 4119058263180917021625157, 8238116526361834043252651, 16476233052723668086506605, 32952466105447336173015212, 65904932210894672346028391, 131809864421789344692057159, 263619728843578689384114273, 527239457687157378768225776, 1054478915374314757536453130, 2108957830748629515072903482, 4217915661497259030145809453, 8435831322994518060291616941, 16871662645989036120583234821, 33743325291978072241166466503, 67486650583956144482332935255, 134973301167912288964665874402, 269946602335824577929331748356, 539893204671649155858663493472, 1079786409343298311717326984659, 2159572818686596623434653971397, 4319145637373193246869307947813, 8638291274746386493738615889494, 17276582549492772987477231778035, 34553165098985545974954463561777, 69106330197971091949908927120612, 138212660395942183899817854240492, 276425320791884367799635708486222, 552850641583768735599271416972059, 1105701283167537471198542833939104, 2211402566335074942397085667883662, 4422805132670149884794171335762669, 8845610265340299769588342671528165, 17691220530680599539176685343057386, 35382441061361199078353370686115257, 70764882122722398156706741372225860, 141529764245444796313413482744456668, 283059528490889592626826965488911035, 566119056981779185253653930977821634, 1132238113963558370507307861955640321, 2264476227927116741014615723911280986, 4528952455854233482029231447822565639, 9057904911708466964058462895645127095, 18115809823416933928116925791290255513, 36231619646833867856233851582580513753, 72463239293667735712467703165161028768, 144926478587335471424935406330322056929, 289852957174670942849870812660644108857, 579705914349341885699741625321288218320, 1159411828698683771399483250642576439539, 2318823657397367542798966501285152878316, 4637647314794735085597933002570305753950, 9275294629589470171195866005140611507792, 18550589259178940342391732010281223016646, 37101178518357880684783464020562446033819, 74202357036715761369566928041124892071360, 148404714073431522739133856082249784137080, 296809428146863045478267712164499568280437, 593618856293726090956535424328999136559879, 1187237712587452181913070848657998273114192, 2374475425174904363826141697315996546230541, 4748950850349808727652283394631993092459573, 9497901700699617455304566789263986184923051, 18995803401399234910609133578527972369842492, 37991606802798469821218267157055944739687775, 75983213605596939642436534314111889479370964, 151966427211193879284873068628223778958747280, 303932854422387758569746137256447557917492698, 607865708844775517139492274512895115834989332, 1215731417689551034278984549025790231669975267, 2431462835379102068557969098051580463339948074, 4862925670758204137115938196103160926679900174, 9725851341516408274231876392206321853359802098, 19451702683032816548463752784412643706719600452, 38903405366065633096927505568825287413439197256, 77806810732131266193855011137650574826878395661, 155613621464262532387710022275301149653756795871, 311227242928525064775420044550602299307513590328, 622454485857050129550840089101204598615027178579, 1244908971714100259101680178202409197230054358243, 2489817943428200518203360356404818394460108715912, 4979635886856401036406720712809636788920217429160, 9959271773712802072813441425619273577840434861240, 19918543547425604145626882851238547155680869723940, 39837087094851208291253765702477094311361739445426, 79674174189702416582507531404954188622723478892192, 159348348379404833165015062809908377245446957783393, 318696696758809666330030125619816754490893915565991, 637393393517619332660060251239633508981787831136714, 1274786787035238665320120502479267017963575662274552, 2549573574070477330640241004958534035927151324542637, 5099147148140954661280482009917068071854302649086450, 10198294296281909322560964019834136143708605298174964, 20396588592563818645121928039668272287417210596350768, 40793177185127637290243856079336544574834421192698279, 81586354370255274580487712158673089149668842385397248, 163172708740510549160975424317346178299337684770794481, 326345417481021098321950848634692356598675369541591385, 652690834962042196643901697269384713197350739083184268, 1305381669924084393287803394538769426394701478166367322, 2610763339848168786575606789077538852789402956332735792, 5221526679696337573151213578155077705578805912665470003, 10443053359392675146302427156310155411157611825330938298, 20886106718785350292604854312620310822315223650661876155, 41772213437570700585209708625240621644630447301323755487, 83544426875141401170419417250481243289260894602647509758, 167088853750282802340838834500962486578521789205295017423, 334177707500565604681677669001924973157043578410590038265, 668355415001131209363355338003849946314087156821180077585, 1336710830002262418726710676007699892628174313642360153656, 2673421660004524837453421352015399785256348627284720302669, 5346843320009049674906842704030799570512697254569440606871, 10693686640018099349813685408061599141025394509138881216453, 21387373280036198699627370816123198282050789018277762434854, 42774746560072397399254741632246396564101578036555524866863, 85549493120144794798509483264492793128203156073111049733124, 171098986240289589597018966528985586256406312146222099470414, 342197972480579179194037933057971172512812624292444198940801, 684395944961158358388075866115942345025625248584888397879306, 1368791889922316716776151732231884690051250497169776795755940, 2737583779844633433552303464463769380102500994339553591514630, 5475167559689266867104606928927538760205001988679107183025927, 10950335119378533734209213857855077520410003977358214366055125, 21900670238757067468418427715710155040820007954716428732107891, 43801340477514134936836855431420310081640015909432857464217560, 87602680955028269873673710862840620163280031818865714928434554, 175205361910056539747347421725681240326560063637731429856866112, 350410723820113079494694843451362480653120127275462859713735058, 700821447640226158989389686902724961306240254550925719427468675, 1401642895280452317978779373805449922612480509101851438854937184, 2803285790560904635957558747610899845224961018203702877709878728, 5606571581121809271915117495221799690449922036407405755419752058, 11213143162243618543830234990443599380899844072814811510839508476, 22426286324487237087660469980887198761799688145629623021679016540, 44852572648974474175320939961774397523599376291259246043358031405, 89705145297948948350641879923548795047198752582518492086716066784, 179410290595897896701283759847097590094397505165036984173432131573, 358820581191795793402567519694195180188795010330073968346864263603, 717641162383591586805135039388390360377590020660147936693728524105, 1435282324767183173610270078776780720755180041320295873387457050201, 2870564649534366347220540157553561441510360082640591746774914096017, 5741129299068732694441080315107122883020720165281183493549828196414, 11482258598137465388882160630214245766041440330562366987099656389597, 22964517196274930777764321260428491532082880661124733974199312779679, 45929034392549861555528642520856983064165761322249467948398625562547, 91858068785099723111057285041713966128331522644498935896797251124485, 183716137570199446222114570083427932256663045288997871793594502244534, 367432275140398892444229140166855864513326090577995743587189004492253, 734864550280797784888458280333711729026652181155991487174378008988092, 1469729100561595569776916560667423458053304362311982974348756017973832, 2939458201123191139553833121334846916106608724623965948697512035947248, 5878916402246382279107666242669693832213217449247931897395024071895189, 11757832804492764558215332485339387664426434898495863794790048143791797, 23515665608985529116430664970678775328852869796991727589580096287580052, 47031331217971058232861329941357550657705739593983455179160192575158303, 94062662435942116465722659882715101315411479187966910358320385150319248, 188125324871884232931445319765430202630822958375933820716640770300635542, 376250649743768465862890639530860405261645916751867641433281540601272930, 752501299487536931725781279061720810523291833503735282866563081202544501, 1505002598975073863451562558123441621046583667007470565733126162405094699, 3010005197950147726903125116246883242093167334014941131466252324810183187, 6020010395900295453806250232493766484186334668029882262932504649620366850, 12040020791800590907612500464987532968372669336059764525865009299240740087, 24080041583601181815225000929975065936745338672119529051730018598481474936, 48160083167202363630450001859950131873490677344239058103460037196962951698, 96320166334404727260900003719900263746981354688478116206920074393925903823, 192640332668809454521800007439800527493962709376956232413840148787851806734, 385280665337618909043600014879601054987925418753912464827680297575703613637, 770561330675237818087200029759202109975850837507824929655360595151407230906, 1541122661350475636174400059518404219951701675015649859310721190302814454988, 3082245322700951272348800119036808439903403350031299718621442380605628916694, 6164490645401902544697600238073616879806806700062599437242884761211257832552, 12328981290803805089395200476147233759613613400125198874485769522422515664363, 24657962581607610178790400952294467519227226800250397748971539044845031325511, 49315925163215220357580801904588935038454453600500795497943078089690062650607, 98631850326430440715161603809177870076908907201001590995886156179380125303446, 197263700652860881430323207618355740153817814402003181991772312358760250608697, 394527401305721762860646415236711480307635628804006363983544624717520501214668, 789054802611443525721292830473422960615271257608012727967089249435041002433401, 1578109605222887051442585660946845921230542515216025455934178498870082004860316, 3156219210445774102885171321893691842461085030432050911868356997740164009722969, 6312438420891548205770342643787383684922170060864101823736713995480328019450051, 12624876841783096411540685287574767369844340121728203647473427990960656038893520, 25249753683566192823081370575149534739688680243456407294946855981921312077786571, 50499507367132385646162741150299069479377360486912814589893711963842624155580018, 100999014734264771292325482300598138958754720973825629179787423927685248311158895, 201998029468529542584650964601196277917509441947651258359574847855370496622316776, 403996058937059085169301929202392555835018883895302516719149695710740993244632514, 807992117874118170338603858404785111670037767790605033438299391421481986489267228, 1615984235748236340677207716809570223340075535581210066876598782842963972978532003, 3231968471496472681354415433619140446680151071162420133753197565685927945957064720, 6463936942992945362708830867238280893360302142324840267506395131371855891914126642, 12927873885985890725417661734476561786720604284649680535012790262743711783828258155, 25855747771971781450835323468953123573441208569299361070025580525487423567656514453, 51711495543943562901670646937906247146882417138598722140051161050974847135313030771, 103422991087887125803341293875812494293764834277197444280102322101949694270626055321, 206845982175774251606682587751624988587529668554394888560204644203899388541252116942, 413691964351548503213365175503249977175059337108789777120409288407798777082504227735, 827383928703097006426730351006499954350118674217579554240818576815597554165008460137, 1654767857406194012853460702012999908700237348435159108481637153631195108330016916120, 3309535714812388025706921404025999817400474696870318216963274307262390216660033831205, 6619071429624776051413842808051999634800949393740636433926548614524780433320067664346, 13238142859249552102827685616103999269601898787481272867853097229049560866640135329143, 26476285718499104205655371232207998539203797574962545735706194458099121733280270656061, 52952571436998208411310742464415997078407595149925091471412388916198243466560541314191, 105905142873996416822621484928831994156815190299850182942824777832396486933121082632509, 211810285747992833645242969857663988313630380599700365885649555664792973866242165261378, 423620571495985667290485939715327976627260761199400731771299111329585947732484330525293, 847241142991971334580971879430655953254521522398801463542598222659171895464968661051091, 1694482285983942669161943758861311906509043044797602927085196445318343790929937322101215, 3388964571967885338323887517722623813018086089595205854170392890636687581859874644201224, 6777929143935770676647775035445247626036172179190411708340785781273375163719749288403103, 13555858287871541353295550070890495252072344358380823416681571562546750327439498576808298, 27111716575743082706591100141780990504144688716761646833363143125093500654878997153611098, 54223433151486165413182200283561981008289377433523293666726286250187001309757994307225117, 108446866302972330826364400567123962016578754867046587333452572500374002619515988614446964, 216893732605944661652728801134247924033157509734093174666905145000748005239031977228894066, 433787465211889323305457602268495848066315019468186349333810290001496010478063954457794970, 867574930423778646610915204536991696132630038936372698667620580002992020956127908915584709, 1735149860847557293221830409073983392265260077872745397335241160005984041912255817831170809, 3470299721695114586443660818147966784530520155745490794670482320011968083824511635662341057, 6940599443390229172887321636295933569061040311490981589340964640023936167649023271324685744, 13881198886780458345774643272591867138122080622981963178681929280047872335298046542649370322, 27762397773560916691549286545183734276244161245963926357363858560095744670596093085298742245, 55524795547121833383098573090367468552488322491927852714727717120191489341192186170597482333, 111049591094243666766197146180734937104976644983855705429455434240382978682384372341194961544, 222099182188487333532394292361469874209953289967711410858910868480765957364768744682389922039, 444198364376974667064788584722939748419906579935422821717821736961531914729537489364779843923, 888396728753949334129577169445879496839813159870845643435643473923063829459074978729559694098, 1776793457507898668259154338891758993679626319741691286871286947846127658918149957459119383155, 3553586915015797336518308677783517987359252639483382573742573895692255317836299914918238766632, 7107173830031594673036617355567035974718505278966765147485147791384510635672599829836477531912, 14214347660063189346073234711134071949437010557933530294970295582769021271345199659672955068674, 28428695320126378692146469422268143898874021115867060589940591165538042542690399319345910137450, 56857390640252757384292938844536287797748042231734121179881182331076085085380798638691820270168, 113714781280505514768585877689072575595496084463468242359762364662152170170761597277383640545287, 227429562561011029537171755378145151190992168926936484719524729324304340341523194554767281088472, 454859125122022059074343510756290302381984337853872969439049458648608680683046389109534562177698, 909718250244044118148687021512580604763968675707745938878098917297217361366092778219069124356481, 1819436500488088236297374043025161209527937351415491877756197834594434722732185556438138248710810, 3638873000976176472594748086050322419055874702830983755512395669188869445464371112876276497420419, 7277746001952352945189496172100644838111749405661967511024791338377738890928742225752552994839729, 14555492003904705890378992344201289676223498811323935022049582676755477781857484451505105989681735, 29110984007809411780757984688402579352446997622647870044099165353510955563714968903010211979362741, 58221968015618823561515969376805158704893995245295740088198330707021911127429937806020423958729961, 116443936031237647123031938753610317409787990490591480176396661414043822254859875612040847917457472, 232887872062475294246063877507220634819575980981182960352793322828087644509719751224081695834910850, 465775744124950588492127755014441269639151961962365920705586645656175289019439502448163391669822178, 931551488249901176984255510028882539278303923924731841411173291312350578038879004896326783339648822, 1863102976499802353968511020057765078556607847849463682822346582624701156077758009792653566679298283, 3726205952999604707937022040115530157113215695698927365644693165249402312155516019585307133358596851, 7452411905999209415874044080231060314226431391397854731289386330498804624311032039170614266717186964, 14904823811998418831748088160462120628452862782795709462578772660997609248622064078341228533434381077, 29809647623996837663496176320924241256905725565591418925157545321995218497244128156682457066868755075, 59619295247993675326992352641848482513811451131182837850315090643990436994488256313364914133737517146, 119238590495987350653984705283696965027622902262365675700630181287980873988976512626729828267475028635, 238477180991974701307969410567393930055245804524731351401260362575961747977953025253459656534950056881, 476954361983949402615938821134787860110491609049462702802520725151923495955906050506919313069900116878, 953908723967898805231877642269575720220983218098925405605041450303846991911812101013838626139800231143, 1907817447935797610463755284539151440441966436197850811210082900607693983823624202027677252279600467825, 3815634895871595220927510569078302880883932872395701622420165801215387967647248404055354504559200929557, 7631269791743190441855021138156605761767865744791403244840331602430775935294496808110709009118401859798, 15262539583486380883710042276313211523535731489582806489680663204861551870588993616221418018236803719203, 30525079166972761767420084552626423047071462979165612979361326409723103741177987232442836036473607437361, 61050158333945523534840169105252846094142925958331225958722652819446207482355974464885672072947214878831, 122100316667891047069680338210505692188285851916662451917445305638892414964711948929771344145894429759854, 244200633335782094139360676421011384376571703833324903834890611277784829929423897859542688291788859515844
    ]
cipher=1210552586072154479867426776758107463169244511186991628141504400199024936339296845132507655589933479768044598418932176690108379140298480790405551573061005655909291462247675584868840035141893556748770266337895571889128422577613223452797329555381197215533551339146807187891070847348454214231505098834813871022509186

import sympy
from Crypto.Util.number import *


s = sympy.discrete_log(p,cipher,7)
bin_m=""
for i in key[::-1]:
    if s>=i:
        bin_m+="1"
        s=s-i
    else:
        bin_m+="0"
m=int(bin_m[::-1],2)
print(long_to_bytes(m))
#b'moectf{429eaa156f6961d6bc655c1887ebb779ec}'

Week4

babe-Lifting

from Crypto.Util.number import *
from secret import flag


p = getPrime(512)
q = getPrime(512)
n = p*q
e = 0x1001
d = inverse(e, (p-1)*(q-1))
bit_leak = 400
d_leak = d & ((1<<bit_leak)-1)
msg = bytes_to_long(flag)
cipher = pow(msg,e,n)
pk = (n, e)

with open('output.txt','w') as f:
    f.write(f"pk = {pk}\n")
    f.write(f"cipher = {cipher}\n")
    f.write(f"hint = {d_leak}\n")
    f.close()

d低位泄露,直接套脚本了。

from Crypto.Util.number import *
import gmpy2
def getFullP(low_p, n):
    R.<x> = PolynomialRing(Zmod(n), implementation='NTL')
    p = x * 2 ^ bit + low_p
    root = (p - n).monic().small_roots(X=2 ^ 128, beta=0.4)
    if root:
        return p(root[0])
    return None


def phase4(low_d,n,c,e):
    maybe_p = set()
    for k in range(1, 1000):
        p = var('p')
        p0 = solve_mod([e * p * low_d == p + k * (n * p - p ^ 2 - n + p)], 2 ^ bit)
        for x in p0:
            maybe_p.add(int(x[0]))
    print(len(maybe_p))
    for x in maybe_p:
        P = getFullP(x, n)
        if P: break

    P = int(P)
    Q = n // P

    assert P * Q == n
    print("P = ",P)
    print("Q = ",Q)

    d = inverse_mod(e, (P - 1) * (Q - 1))
    m = pow(c,d,n)
    print(long_to_bytes(int(m)))


n,e = (53282434320648520638797489235916411774754088938038649364676595382708882567582074768467750091758871986943425295325684397148357683679972957390367050797096129400800737430005406586421368399203345142990796139798355888856700153024507788780229752591276439736039630358687617540130010809829171308760432760545372777123, 4097)
cipher = 14615370570055065930014711673507863471799103656443111041437374352195976523098242549568514149286911564703856030770733394303895224311305717058669800588144055600432004216871763513804811217695900972286301248213735105234803253084265599843829792871483051020532819945635641611821829176170902766901550045863639612054
hint = 1550452349150409256147460237724995145109078733341405037037945312861833198753379389784394833566301246926188176937280242129
bit = hint.nbits()
phase4(hint,n,cipher,e)
print("over")

"moectf{7h3_st4rt_0f_c0pp3rsmith!}"

*ezLCG

from Crypto.Util.Padding import pad
from Crypto.Util.number import *
from Crypto.Cipher import AES
import os


q = 264273181570520944116363476632762225021
key = os.urandom(16)
iv = os.urandom(16)
root = 122536272320154909907460423807891938232
f = sum([a*root**i for i,a in enumerate(key)])
assert key.isascii()
assert f % q == 0

with open('flag.txt','rb') as f:
    flag = f.read()

cipher = AES.new(key,AES.MODE_CBC, iv)
ciphertext = cipher.encrypt(pad(flag,16)).hex()

with open('output.txt','w') as f:
    f.write(f"{iv = }" + "\n")
    f.write(f"{ciphertext = }" + "\n")

我们能够知道\(\sum_{i=0}^{15}a_iroot^i=0\mod q\)

即\(a_0root^0+a_1root^1+...+a_{15}root^{15}=kq\)

在化一下为\(a_0+a_1root^1+...+a_{15}root^{15}-kq=0\)

到这里我就卡住了, 如果直接用这个式子构造格是不行的。

需要转成\(a_1root^1+...+a_{15}root^{15}-kq=-a_0\),利用这个式子来构造

在格工坊中,X老师说:等式右边是一个已知量,我们构造的原则是让最短向量内为未知数,所以要让一个未知量作为结果写在一侧。

所以构造的格为:

\[L=\left( \begin{matrix} 1 & & & root\\ &\ddots& & \vdots\\ & & 1 & root^{15}\\ & & & q \end{matrix} \right)\\ (a_1,a_2,...,a_{15},k)L=(a_1,a_2,...,a_{15},a_0) \]

如果,我们用一开始的等式构造格,则为,我们可以发现第一行这个向量,已经可以算是最短向量了,几乎不可能找到比它更短的,所以肯定是不能够这样子构造的。

\[L=\left( \begin{matrix} 1& & & & 1\\ & 1 & & & root\\ &&\ddots& & \vdots\\ && & 1 & root^{15}\\ && & & q \end{matrix} \right)\\ (a_0,a_1,a_2,...,a_{15},k)L=(a_0,a_1,a_2,...,a_{15},0) \]

(我也不清楚有没有讲对,我现在也只停留在用的阶段)

from Crypto.Util.number import *
from Crypto.Cipher import AES

q = 264273181570520944116363476632762225021
root = 122536272320154909907460423807891938232
length=16
L=Matrix(ZZ,length,length)
for i in range(length-1):
    L[i,i]=1
    L[i,-1]=root^(i+1)
L[-1,-1]=q
x=L.LLL()

iv = b'Gc\xf2\xfd\x94\xdc\xc8\xbb\xf4\x84\xb1\xfd\x96\xcd6\\'
ciphertext = 'd23eac665cdb57a8ae7764bb4497eb2f79729537e596600ded7a068c407e67ea75e6d76eb9e23e21634b84a96424130e'
ciphertext=bytes.fromhex(ciphertext)
for i in x:
	try:
		key=''
		for j in range(16):
			key=key+chr(abs(int(i[j])))
		key=key[-1]+key[:-1]
		key=key.encode()
		cipher = AES.new(key,AES.MODE_CBC, iv)
		ciphertext = cipher.decrypt(ciphertext)
		if b'moectf' in ciphertext:
			print(ciphertext)
			break
	except:
		pass
#b'moectf{th3_first_blood_0f_LLL!@#$}\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e'

*hidden-poly

from sage.all import *
from random import getrandbits, randint
from secrets import randbelow
from Crypto.Util.number import getPrime,isPrime,inverse
from Crypto.Util.Padding import pad
from Crypto.Cipher import AES
from secret import priKey, flag
from hashlib import sha1
import os


q = getPrime(160)
while True:
    t0 = q*getrandbits(864)
    if isPrime(t0+1):
        p = t0 + 1
        break


x = priKey
assert p % q == 1
h = randint(1,p-1)
g = pow(h,(p-1)//q,p)
y = pow(g,x,p)


def sign(z, k):
    r = pow(g,k,p) % q
    s = (inverse(k,q)*(z+r*priKey)) % q
    return (r,s)


def verify(m,s,r):
    z = int.from_bytes(sha1(m).digest(), 'big')
    u1 = (inverse(s,q)*z) % q
    u2 = (inverse(s,q)*r) % q
    r0 = ((pow(g,u1,p)*pow(y,u2,p)) % p) % q
    return r0 == r


def lcg(a, b, q, x):
    while True:
        x = (a * x + b) % q
        yield x


msg = [os.urandom(16) for i in range(5)]

a, b, x = [randbelow(q) for _ in range(3)]
prng = lcg(a, b, q, x)
sigs = []
for m, k in zip(msg,prng):
    z = int.from_bytes(sha1(m).digest(), "big") % q
    r, s = sign(z, k)
    assert verify(m, s, r)
    sigs.append((r,s))


print(f"{g = }")
print(f"{h = }")
print(f"{q = }")
print(f"{p = }")
print(f"{msg = }")
print(f"{sigs = }")
key = sha1(str(priKey).encode()).digest()[:16]
iv = os.urandom(16)
cipher = AES.new(key, AES.MODE_CBC,iv)
ct = cipher.encrypt(pad(flag,16))
print(f"{iv = }")
print(f"{ct = }")


'''
g = 81569684196645348869992756399797937971436996812346070571468655785762437078898141875334855024163673443340626854915520114728947696423441493858938345078236621180324085934092037313264170158390556505922997447268262289413542862021771393535087410035145796654466502374252061871227164352744675750669230756678480403551
h = 13360659280755238232904342818943446234394025788199830559222919690197648501739683227053179022521444870802363019867146013415532648906174842607370958566866152133141600828695657346665923432059572078189013989803088047702130843109809724983853650634669946823993666248096402349533564966478014376877154404963309438891
q = 1303803697251710037027345981217373884089065173721
p = 135386571420682237420633670579115261427110680959831458510661651985522155814624783887385220768310381778722922186771694358185961218902544998325115481951071052630790578356532158887162956411742570802131927372034113509208643043526086803989709252621829703679985669846412125110620244866047891680775125948940542426381
msg = [b'I\xf0\xccy\xd5~\xed\xf8A\xe4\xdf\x91+\xd4_$', b'~\xa0\x9bCB\xef\xc3SY4W\xf9Aa\rO', b'\xe6\x96\xf4\xac\n9\xa7\xc4\xef\x82S\xe9 XpJ', b'3,\xbb\xe2-\xcc\xa1o\xe6\x93+\xe8\xea=\x17\xd1', b'\x8c\x19PHN\xa8\xbc\xfc\xa20r\xe5\x0bMwJ']
sigs = [(913082810060387697659458045074628688804323008021, 601727298768376770098471394299356176250915124698), (406607720394287512952923256499351875907319590223, 946312910102100744958283218486828279657252761118), (1053968308548067185640057861411672512429603583019, 1284314986796793233060997182105901455285337520635), (878633001726272206179866067197006713383715110096, 1117986485818472813081237963762660460310066865326), (144589405182012718667990046652227725217611617110, 1028458755419859011294952635587376476938670485840)]
iv = b'M\xdf\x0e\x7f\xeaj\x17PE\x97\x8e\xee\xaf:\xa0\xc7'
ct = b"\xa8a\xff\xf1[(\x7f\xf9\x93\xeb0J\xc43\x99\xb25:\xf5>\x1c?\xbd\x8a\xcd)i)\xdd\x87l1\xf5L\xc5\xc5'N\x18\x8d\xa5\x9e\x84\xfe\x80\x9dm\xcc"
'''

DSA数字签名配合上LCG生成k,我一开始只往DSA方面想。

看了wp之后,发现是LCG方面的求同余方程式,使用Grobner基,完全不懂,看到说是像LCG这种,几组同余方程式,然后度也不高,然后就可以用?。

具体可参考:

LCG | DexterJie'Blog

Groebner basis - Scholarpedia

根据DSA,我们有等式\(s_i=k_i^{-1}(H(m_i)+xr_i)\mod q\),即\(s_ik_i=H(m_i)+xr_i\mod q\)

根据LCG,我们有等式\(k_i=ak_{i-1}+b\mod q\)

其中DSA的等式中,我们已知\((s_i,H(m_i),r_i,q)\),共有5组;LCG的等式共有4组。

然后就使用Grobner基(?

(我直接偷代码了)

from hashlib import sha1
from Crypto.Util.number import *
from gmpy2 import *
from Crypto.Cipher import AES

g = 81569684196645348869992756399797937971436996812346070571468655785762437078898141875334855024163673443340626854915520114728947696423441493858938345078236621180324085934092037313264170158390556505922997447268262289413542862021771393535087410035145796654466502374252061871227164352744675750669230756678480403551
h = 13360659280755238232904342818943446234394025788199830559222919690197648501739683227053179022521444870802363019867146013415532648906174842607370958566866152133141600828695657346665923432059572078189013989803088047702130843109809724983853650634669946823993666248096402349533564966478014376877154404963309438891
q = 1303803697251710037027345981217373884089065173721
p = 135386571420682237420633670579115261427110680959831458510661651985522155814624783887385220768310381778722922186771694358185961218902544998325115481951071052630790578356532158887162956411742570802131927372034113509208643043526086803989709252621829703679985669846412125110620244866047891680775125948940542426381
msg = [b'I\xf0\xccy\xd5~\xed\xf8A\xe4\xdf\x91+\xd4_$', b'~\xa0\x9bCB\xef\xc3SY4W\xf9Aa\rO', b'\xe6\x96\xf4\xac\n9\xa7\xc4\xef\x82S\xe9 XpJ', b'3,\xbb\xe2-\xcc\xa1o\xe6\x93+\xe8\xea=\x17\xd1', b'\x8c\x19PHN\xa8\xbc\xfc\xa20r\xe5\x0bMwJ']
sigs = [(913082810060387697659458045074628688804323008021, 601727298768376770098471394299356176250915124698), (406607720394287512952923256499351875907319590223, 946312910102100744958283218486828279657252761118), (1053968308548067185640057861411672512429603583019, 1284314986796793233060997182105901455285337520635), (878633001726272206179866067197006713383715110096, 1117986485818472813081237963762660460310066865326), (144589405182012718667990046652227725217611617110, 1028458755419859011294952635587376476938670485840)]
iv = b'M\xdf\x0e\x7f\xeaj\x17PE\x97\x8e\xee\xaf:\xa0\xc7'
ct = b"\xa8a\xff\xf1[(\x7f\xf9\x93\xeb0J\xc43\x99\xb25:\xf5>\x1c?\xbd\x8a\xcd)i)\xdd\x87l1\xf5L\xc5\xc5'N\x18\x8d\xa5\x9e\x84\xfe\x80\x9dm\xcc"


M=[bytes_to_long(sha1(m).digest()) for m in msg]

R=[]
S=[]
for i in sigs:
	R.append(i[0])
	S.append(i[1])

PR.<k1,k2,k3,k4,k5,a,b,x>=PolynomialRing(Zmod(q))
f1=a*k1+b-k2
f2=a*k2+b-k3
f3=a*k3+b-k4
f4=a*k4+b-k5
f5=M[0]+R[0]*x-S[0]*k1
f6=M[1]+R[1]*x-S[1]*k2
f7=M[2]+R[2]*x-S[2]*k3
f8=M[3]+R[3]*x-S[3]*k4
f9=M[4]+R[4]*x-S[4]*k5

F=[f1,f2,f3,f4,f5,f6,f7,f8,f9]
I=Ideal(F)
GB=I.groebner_basis()
#print(GB)
#[k1 + 589591838197718268334835750129509747975333031348, k2 + 844503589534414934566842860650664556382147778700, k3 + 716280468418328877083579703993352560494418066308, k4 + 27776456396473757336894470886255896503382273516, k5 + 670354674299014147899563880401537712360979759524, a + 510417064719157223187143900049211715226065749422, b + 525708871922268409935340932715605330745743707656, x + 1144162652064701115049643134487732928553039124427]
x=-1144162652064701115049643134487732928553039124427%q
key=sha1(str(int(x)).encode()).digest()[:16]
cipher=AES.new(key,AES.MODE_CBC,iv)
flag=cipher.decrypt(ct)
print(flag)
#b'moectf{w3ak_n0nce_is_h4rmful_to_h3alth}\t\t\t\t\t\t\t\t\t'

标签:Moectf2024,BB,bytes,Crypto,flag,print,import
From: https://www.cnblogs.com/naby/p/18466255

相关文章

  • 0xGame2024-week1-crypto
    CryptoCaesarCipher密文:0yHbnf{Uif_Cfhjoojoh_Pg_Dszqup}提示:凯撒加密。改成-1就好了RSA_EasyfromCrypto.Util.numberimportbytes_to_long,getPrimefromhashlibimportmd5fromrandomimportrandintfromgmpy2importinvert,gcd#HashFunction:defMD5(m......
  • ossfs挂载OSS对象存储时出现libcrypto版本问题
    问题:在容器内使用ossfs挂载OSS对象存储,安装和配置都按照官方教程很顺利,但是挂载的时候出现了问题,libcrpyto1.0.0动态库缺失。原来是下载错了安装包,官网有Ubuntu22.04的安装包,所以该问题不存在,下述内容仅提供类似问题的思路。!!!但是遇到了容器内挂载OSS的另一个问题,需要访问FUSE文......
  • crit: Microsoft.AspNetCore.Server.Kestrel[0] Unable to start Kestrel. Interop+Cr
    域名证书没有放在指定的位置错误信息crit:Microsoft.AspNetCore.Server.Kestrel[0]UnabletostartKestrel.Interop+Crypto+OpenSslCryptographicException:error:2006D080:BIOroutines:BIO_new_file:nosuchfileatInterop.Crypto.CheckValidOpenSslHandle(Saf......
  • android开发编译openssl源代码生成libcrypto.so和libssl.so两个动态库用于android ndk
    openssl编译本篇文章的操作是在Linux环境之下,在虚拟机ubuntu20版本上操作的步骤1.openssl下载解压tar包openssl下载地址:https://openssl-library.org/source/下载完解压:tar-zxvfopenssl-3.3.2.tar.gz//我这里下载openssl-3.3.2.tar.gz版本2.编译openssl库,得......
  • BaseCTF复现-Crypto
    前言base打了没几天就军训了,前两周的还打了打,军训烤红薯了,后面上的题都懒得看了,趁着国庆假期,闪击了下苏州,人太多了,还不如待在学校水一水。因为是复现平台做的,顺序比较乱。铜匠附件:​fromCrypto.Util.numberimportgetPrime,bytes_to_long#fromsecretimportflagflag=......
  • Crypto工具与算法
    参考博客:https://lazzzaro.github.io/2020/05/10/crypto-crypto常用工具/https://bbs.kanxue.com/thread-266504.htmhttps://lazzzaro.github.io/2020/05/10/crypto-crypto常用算法/工具以windows为主python中importgmpy2与fromgmpy2import*的区别importgmpy2gmpy......
  • 兼收并蓄 TypeScript - 第三方库: crypto-js
    源码https://github.com/webabcd/TypeScriptDemo作者webabcd兼收并蓄TypeScript-第三方库:crypto-js示例如下:third\cryptojs.ts/**本例以在TypeScript中使用crypto-js为例*crypto-js是一个纯js项目,是不能直接在typescript中使用的,需要相应的.d.ts......
  • Ubuntu 64系统编译android arm64-v8a 的openssl静态库libssl.a和libcrypto.a
    #!/bin/bash#Cross-compileenvironmentforAndroidonARM64andx86##ContentslicensedunderthetermsoftheOpenSSLlicense#http://www.openssl.org/source/license.html##Seehttp://wiki.openssl.org/index.php/FIPS_Library_and_Android#andhttp:......
  • BaseCTF2024-week4&Fin-Crypto部分题目wp
    week4哎呀数据丢失了具体分析我就不说了,最简单的证书分析,base64解码后前三个数据分别就是n,e,d。我当时看得是公主的博客,可以参考:RSA进阶(一)-Kicky_Mu-博客园(cnblogs.com)fromCrypto.Util.numberimport*fromgmpy2import*n=0x00bd278484122aef9a69ec647290219d......
  • uniapp vue3使用crypto-js加密解密
    开启crypto-js加密解密的研究历程如何查看crypto-js的版本号?检查crypto-js是否正常我是这样认为的Nativecryptomodulecouldnotbeusedtogetsecurerandomnumber.本机加密模块无法用于获取安全随机数。PC端调试好好的,然后在微信小程序,安卓模拟器,真机调试就......