直接代码中分析
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
// 争锁
final void lock() {
acquire(1);
}
// 来自父类AQS,我直接贴过来这边,下面分析的时候同样会这样做,不会给读者带来阅读压力
// 我们看到,这个方法,如果tryAcquire(arg) 返回true, 也就结束了。
// 否则,acquireQueued方法会将线程压到队列中
public final void acquire(int arg) { // 此时 arg == 1
// 首先调用tryAcquire(1)一下,名字上就知道,这个只是试一试
// 因为有可能直接就成功了呢,也就不需要进队列排队了,
// 对于公平锁的语义就是:本来就没人持有锁,根本没必要进队列等待(又是挂起,又是等待被唤醒的)
if (!tryAcquire(arg) &&
// tryAcquire(arg)没有成功,这个时候需要把当前线程挂起,放到阻塞队列中。
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) {
selfInterrupt();
}
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
// 尝试直接获取锁,返回值是boolean,代表是否获取到锁
// 返回true:1.没有线程在等待锁;2.重入锁,线程本来就持有锁,也就可以理所当然可以直接获取
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// state == 0 此时此刻没有线程持有锁
if (c == 0) {
// 虽然此时此刻锁是可以用的,但是这是公平锁,既然是公平,就得讲究先来后到,
// 看看有没有别人在队列中等了半天了
if (!hasQueuedPredecessors() &&
// 如果没有线程在等待,那就用CAS尝试一下,成功了就获取到锁了,
// 不成功的话,只能说明一个问题,就在刚刚几乎同一时刻有个线程抢先了 =_=
// 因为刚刚还没人的,我判断过了
compareAndSetState(0, acquires)) {
// 到这里就是获取到锁了,标记一下,告诉大家,现在是我占用了锁
setExclusiveOwnerThread(current);
return true;
}
}
// 会进入这个else if分支,说明是重入了,需要操作:state=state+1
// 这里不存在并发问题
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
// 如果到这里,说明前面的if和else if都没有返回true,说明没有获取到锁
// 回到上面一个外层调用方法继续看:
// if (!tryAcquire(arg)
// && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
// selfInterrupt();
return false;
}
// 假设tryAcquire(arg) 返回false,那么代码将执行:
// acquireQueued(addWaiter(Node.EXCLUSIVE), arg),
// 这个方法,首先需要执行:addWaiter(Node.EXCLUSIVE)
/**
* Creates and enqueues node for current thread and given mode.
*
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
// 此方法的作用是把线程包装成node,同时进入到队列中
// 参数mode此时是Node.EXCLUSIVE,代表独占模式
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 以下几行代码想把当前node加到链表的最后面去,也就是进到阻塞队列的最后
Node pred = tail;
// tail!=null => 队列不为空(tail==head的时候,其实队列是空的,不过不管这个吧)
if (pred != null) {
// 将当前的队尾节点,设置为自己的前驱
node.prev = pred;
// 用CAS把自己设置为队尾, 如果成功后,tail == node 了,这个节点成为阻塞队列新的尾巴
if (compareAndSetTail(pred, node)) {
// 进到这里说明设置成功,当前node==tail, 将自己与之前的队尾相连,
// 上面已经有 node.prev = pred,加上下面这句,也就实现了和之前的尾节点双向连接了
pred.next = node;
// 线程入队了,可以返回了
return node;
}
}
// 仔细看看上面的代码,如果会到这里,
// 说明 pred==null(队列是空的) 或者 CAS失败(有线程在竞争入队)
// 读者一定要跟上思路,如果没有跟上,建议先不要往下读了,往回仔细看,否则会浪费时间的
enq(node);
return node;
}
/**
* Inserts node into queue, initializing if necessary. See picture above.
* @param node the node to insert
* @return node's predecessor
*/
// 采用自旋的方式入队
// 之前说过,到这个方法只有两种可能:等待队列为空,或者有线程竞争入队,
// 自旋在这边的语义是:CAS设置tail过程中,竞争一次竞争不到,我就多次竞争,总会排到的
private Node enq(final Node node) {
for (;;) {
Node t = tail;
// 之前说过,队列为空也会进来这里
if (t == null) { // Must initialize
// 初始化head节点
// 细心的读者会知道原来 head 和 tail 初始化的时候都是 null 的
// 还是一步CAS,你懂的,现在可能是很多线程同时进来呢
if (compareAndSetHead(new Node()))
// 给后面用:这个时候head节点的waitStatus==0, 看new Node()构造方法就知道了
// 这个时候有了head,但是tail还是null,设置一下,
// 把tail指向head,放心,马上就有线程要来了,到时候tail就要被抢了
// 注意:这里只是设置了tail=head,这里可没return哦,没有return,没有return
// 所以,设置完了以后,继续for循环,下次就到下面的else分支了
tail = head;
} else {
// 下面几行,和上一个方法 addWaiter 是一样的,
// 只是这个套在无限循环里,反正就是将当前线程排到队尾,有线程竞争的话排不上重复排
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 现在,又回到这段代码了
// if (!tryAcquire(arg)
// && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
// selfInterrupt();
// 下面这个方法,参数node,经过addWaiter(Node.EXCLUSIVE),此时已经进入阻塞队列
// 注意一下:如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg))返回true的话,
// 意味着上面这段代码将进入selfInterrupt(),所以正常情况下,下面应该返回false
// 这个方法非常重要,应该说真正的线程挂起,然后被唤醒后去获取锁,都在这个方法里了
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
// p == head 说明当前节点虽然进到了阻塞队列,但是是阻塞队列的第一个,因为它的前驱是head
// 注意,阻塞队列不包含head节点,head一般指的是占有锁的线程,head后面的才称为阻塞队列
// 所以当前节点可以去试抢一下锁
// 这里我们说一下,为什么可以去试试:
// 首先,它是队头,这个是第一个条件,其次,当前的head有可能是刚刚初始化的node,
// enq(node) 方法里面有提到,head是延时初始化的,而且new Node()的时候没有设置任何线程
// 也就是说,当前的head不属于任何一个线程,所以作为队头,可以去试一试,
// tryAcquire已经分析过了, 忘记了请往前看一下,就是简单用CAS试操作一下state
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 到这里,说明上面的if分支没有成功,要么当前node本来就不是队头,
// 要么就是tryAcquire(arg)没有抢赢别人,继续往下看
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
// 什么时候 failed 会为 true???
// tryAcquire() 方法抛异常的情况
if (failed)
cancelAcquire(node);
}
}
/**
* Checks and updates status for a node that failed to acquire.
* Returns true if thread should block. This is the main signal
* control in all acquire loops. Requires that pred == node.prev
*
* @param pred node's predecessor holding status
* @param node the node
* @return {@code true} if thread should block
*/
// 刚刚说过,会到这里就是没有抢到锁呗,这个方法说的是:"当前线程没有抢到锁,是否需要挂起当前线程?"
// 第一个参数是前驱节点,第二个参数才是代表当前线程的节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// 前驱节点的 waitStatus == -1 ,说明前驱节点状态正常,当前线程需要挂起,直接可以返回true
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
// 前驱节点 waitStatus大于0 ,之前说过,大于0 说明前驱节点取消了排队。
// 这里需要知道这点:进入阻塞队列排队的线程会被挂起,而唤醒的操作是由前驱节点完成的。
// 所以下面这块代码说的是将当前节点的prev指向waitStatus<=0的节点,
// 简单说,就是为了找个好爹,因为你还得依赖它来唤醒呢,如果前驱节点取消了排队,
// 找前驱节点的前驱节点做爹,往前遍历总能找到一个好爹的
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 仔细想想,如果进入到这个分支意味着什么
// 前驱节点的waitStatus不等于-1和1,那也就是只可能是0,-2,-3
// 在我们前面的源码中,都没有看到有设置waitStatus的,所以每个新的node入队时,waitStatu都是0
// 正常情况下,前驱节点是之前的 tail,那么它的 waitStatus 应该是 0
// 用CAS将前驱节点的waitStatus设置为Node.SIGNAL(也就是-1)
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
// 这个方法返回 false,那么会再走一次 for 循序,
// 然后再次进来此方法,此时会从第一个分支返回 true
return false;
}
// private static boolean shouldParkAfterFailedAcquire(Node pred, Node node)
// 这个方法结束根据返回值我们简单分析下:
// 如果返回true, 说明前驱节点的waitStatus==-1,是正常情况,那么当前线程需要被挂起,等待以后被唤醒
// 我们也说过,以后是被前驱节点唤醒,就等着前驱节点拿到锁,然后释放锁的时候叫你好了
// 如果返回false, 说明当前不需要被挂起,为什么呢?往后看
// 跳回到前面是这个方法
// if (shouldParkAfterFailedAcquire(p, node) &&
// parkAndCheckInterrupt())
// interrupted = true;
// 1. 如果shouldParkAfterFailedAcquire(p, node)返回true,
// 那么需要执行parkAndCheckInterrupt():
// 这个方法很简单,因为前面返回true,所以需要挂起线程,这个方法就是负责挂起线程的
// 这里用了LockSupport.park(this)来挂起线程,然后就停在这里了,等待被唤醒=======
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
// 2. 接下来说说如果shouldParkAfterFailedAcquire(p, node)返回false的情况
// 仔细看shouldParkAfterFailedAcquire(p, node),我们可以发现,其实第一次进来的时候,一般都不会返回true的,原因很简单,前驱节点的waitStatus=-1是依赖于后继节点设置的。也就是说,我都还没给前驱设置-1呢,怎么可能是true呢,但是要看到,这个方法是套在循环里的,所以第二次进来的时候状态就是-1了。
// 解释下为什么shouldParkAfterFailedAcquire(p, node)返回false的时候不直接挂起线程:
// => 是为了应对在经过这个方法后,node已经是head的直接后继节点了。剩下的读者自己想想吧。
}
标签:node,Node,head,抢锁,Sync,线程,true,节点
From: https://blog.csdn.net/ZXYokjhgf9/article/details/142887063