首页 > 其他分享 >day12-多线程

day12-多线程

时间:2024-10-13 17:24:18浏览次数:7  
标签:执行 Thread money 线程 day12 new 多线程 public

day10-多线程

一、多线程常用方法

assets/1668051403591.png

下面我们演示一下getName()setName(String name)currentThread()sleep(long time)这些方法的使用效果。

public class MyThread extends Thread{
    public MyThread(String name){
        super(name); //1.执行父类Thread(String name)构造器,为当前线程设置名字了
    }
    @Override
    public void run() {
        //2.currentThread() 哪个线程执行它,它就会得到哪个线程对象。
        Thread t = Thread.currentThread();
        for (int i = 1; i <= 3; i++) {
            //3.getName() 获取线程名称
            System.out.println(t.getName() + "输出:" + i);
        }
    }
}

再测试类中,创建线程对象,并启动线程

public class ThreadTest1 {
    public static void main(String[] args) {
        Thread t1 = new MyThread();
        t1.setName(String name) //设置线程名称;
        t1.start();
        System.out.println(t1.getName());  //Thread-0

        Thread t2 = new MyThread("2号线程");
        // t2.setName("2号线程");
        t2.start();
        System.out.println(t2.getName()); // Thread-1

        // 主线程对象的名字
        // 哪个线程执行它,它就会得到哪个线程对象。
        Thread m = Thread.currentThread();
        m.setName("最牛的线程");
        System.out.println(m.getName()); // main

        for (int i = 1; i <= 5; i++) {
            System.out.println(m.getName() + "线程输出:" + i);
        }
    }
}

执行上面代码,效果如下图所示,我们发现每一条线程都有自己了名字了。

assets/1668052028054.png

最后再演示一下join这个方法是什么效果。

public class ThreadTest2 {
    public static void main(String[] args) throws Exception {
        // join方法作用:让当前调用这个方法的线程先执行完。
        Thread t1 = new MyThread("1号线程");
        t1.start();
        t1.join();

        Thread t2 = new MyThread("2号线程");
        t2.start();
        t2.join();

        Thread t3 = new MyThread("3号线程");
        t3.start();
        t3.join();
    }
}

执行效果是1号线程先执行完,再执行2号线程;2号线程执行完,再执行3号线程;3号线程执行完就结束了。

assets/1668052307537.png

我们再尝试,把join()方法去掉,再看执行效果。此时你会发现2号线程没有执行完1号线程就执行了(效果是多次运行才出现的,根据个人电脑而异,可能有同学半天也出现不了也是正常的)

assets/1668052414444.png

二、线程安全问题

各位小伙伴,前面我们已经学习了如何创建线程,以及线程的常用方法。接下来,我们要学习一个在实际开发过程中,使用线程时最重要的一个问题,叫线程安全问题。

2.1 线程安全问题概述

  • 首先,什么是线程安全问题呢?

线程安全问题指的是,多个线程同时操作同一个共享资源的时候,可能会出现业务安全问题。

下面通过一个取钱的案例给同学们演示一下。案例需求如下

场景:小明和小红是一对夫妻,他们有一个共享账户,余额是10万元,小红和小明同时来取钱,并且2人各自都在取钱10万元,可能出现什么问题呢?

如下图所示,小明和小红假设都是一个线程,本类每个线程都应该执行完三步操作,才算是完成的取钱的操作。但是真实执行过程可能是下面这样子的

​ ① 小红线程只执行了判断余额是否足够(条件为true),然后CPU的执行权就被小红线程抢走了。

​ ② 小红线程也执行了判断了余额是否足够(条件也是true), 然后CPU执行权又被小明线程抢走了。

​ ③ 小明线程由于刚才已经判断余额是否足够了,直接执行第2步,吐出了10万元钱,此时共享账户月为0。然后CPU执行权又被小红线程抢走。

​ ④ 小红线程由于刚刚也已经判断余额是否足够了,直接执行第2步,吐出了10万元钱,此时共享账户月为-10万。

assets/1668059112092.png

你会发现,在这个取钱案例中,两个人把共享账户的钱都取了10万,但问题是只有10万块钱啊!!!

以上取钱案例中的问题,就是线程安全问题的一种体现。

2.2 线程安全问题的代码演示

先定义一个共享的账户类

public class Account {
    private String cardId; // 卡号
    private double money; // 余额。

    public Account() {
    }

    public Account(String cardId, double money) {
        this.cardId = cardId;
        this.money = money;
    }

    // 小明 小红同时过来的
    public void drawMoney(double money) {
        // 先搞清楚是谁来取钱?
        String name = Thread.currentThread().getName();
        // 1、判断余额是否足够
        if(this.money >= money){
            System.out.println(name + "来取钱" + money + "成功!");
            this.money -= money;
            System.out.println(name + "来取钱后,余额剩余:" + this.money);
        }else {
            System.out.println(name + "来取钱:余额不足~");
        }
    }

    public String getCardId() {
        return cardId;
    }

    public void setCardId(String cardId) {
        this.cardId = cardId;
    }

    public double getMoney() {
        return money;
    }

    public void setMoney(double money) {
        this.money = money;
    }
}

在定义一个是取钱的线程类

public class DrawThread extends Thread{
    private Account acc;
    public DrawThread(Account acc, String name){
        super(name);
        this.acc = acc;
    }
    @Override
    public void run() {
        // 取钱(小明,小红)
        acc.drawMoney(100000);
    }
}

最后,再写一个测试类,在测试类中创建两个线程对象

public class ThreadTest {
    public static void main(String[] args) {
         // 1、创建一个账户对象,代表两个人的共享账户。
        Account acc = new Account("ICBC-110", 100000);
        // 2、创建两个线程,分别代表小明 小红,再去同一个账户对象中取钱10万。
        new DrawThread(acc, "小明").start(); // 小明
        new DrawThread(acc, "小红").start(); // 小红
    }
}

运行程序,执行效果如下。你会发现两个人都取了10万块钱,余额为-10完了。

assets/1668059997020.png

2.3 线程同步方案

为了解决前面的线程安全问题,我们可以使用线程同步思想。同步最常见的方案就是加锁,意思是每次只允许一个线程加锁,加锁后才能进入访问,访问完毕后自动释放锁,然后其他线程才能再加锁进来。

assets/1668060312733.png

等小红线程执行完了,把余额改为0,出去了就会释放锁。这时小明线程就可以加锁进来执行,如下图所示。

assets/1668060382390.png

采用加锁的方案,就可以解决前面两个线程都取10万块钱的问题。怎么加锁呢?Java提供了三种方案

1.同步代码块
2.同步方法
3.Lock锁

2.4 同步代码块

我们先来学习同步代码块。它的作用就是把访问共享数据的代码锁起来,以此保证线程安全。

//锁对象:必须是一个唯一的对象(同一个地址)
synchronized(锁对象){
    //...访问共享数据的代码...
}

使用同步代码块,来解决前面代码里面的线程安全问题。我们只需要修改DrawThread类中的代码即可。

// 小明 小红线程同时过来的
public void drawMoney(double money) {
    // 先搞清楚是谁来取钱?
    String name = Thread.currentThread().getName();
    // 1、判断余额是否足够
    // this正好代表共享资源!
    synchronized (this) {
        if(this.money >= money){
            System.out.println(name + "来取钱" + money + "成功!");
            this.money -= money;
            System.out.println(name + "来取钱后,余额剩余:" + this.money);
        }else {
            System.out.println(name + "来取钱:余额不足~");
        }
    }
}

此时再运行测试类,观察是否会出现不合理的情况。

最后,再给同学们说一下锁对象如何选择的问题

1.建议把共享资源作为锁对象, 不要将随便无关的对象当做锁对象
2.对于实例方法,建议使用this作为锁对象
3.对于静态方法,建议把类的字节码(类名.class)当做锁对象

2.5 同步方法

接下来,学习同步方法解决线程安全问题。其实同步方法,就是把整个方法给锁住,一个线程调用这个方法,另一个线程调用的时候就执行不了,只有等上一个线程调用结束,下一个线程调用才能继续执行。

// 同步方法
public synchronized void drawMoney(double money) {
    // 先搞清楚是谁来取钱?
    String name = Thread.currentThread().getName();
    // 1、判断余额是否足够
    if(this.money >= money){
        System.out.println(name + "来取钱" + money + "成功!");
        this.money -= money;
        System.out.println(name + "来取钱后,余额剩余:" + this.money);
    }else {
        System.out.println(name + "来取钱:余额不足~");
    }
}

改完之后,再次运行测试类,观察是否会出现不合理的情况。

接着,再问同学们一个问题,同步方法有没有锁对象?锁对象是谁?

同步方法也是有锁对象,只不过这个锁对象没有显示的写出来而已。
	1.对于实例方法,锁对象其实是this(也就是方法的调用者)
	2.对于静态方法,锁对象时类的字节码对象(类名.class)

最终,总结一下同步代码块和同步方法有什么区别?

1.不存在哪个好与不好,只是一个锁住的范围大,一个范围小
2.同步方法是将方法中所有的代码锁住
3.同步代码块是将方法中的部分代码锁住

2.6 Lock锁

接下来,我们再来学习一种,线程安全问题的解决办法,叫做Lock锁。

Lock锁是JDK5版本专门提供的一种锁对象,通过这个锁对象的方法来达到加锁,和释放锁的目的,使用起来更加灵活。格式如下

1.首先在成员变量位子,需要创建一个Lock接口的实现类对象(这个对象就是锁对象)
	private final Lock lk = new ReentrantLock();
2.在需要上锁的地方加入下面的代码
	 lk.lock(); // 加锁
	 //...中间是被锁住的代码...
	 lk.unlock(); // 解锁

使用Lock锁改写前面DrawThread中取钱的方法,代码如下

// 创建了一个锁对象
private final Lock lk = new ReentrantLock();

public void drawMoney(double money) {
        // 先搞清楚是谁来取钱?
        String name = Thread.currentThread().getName();
        try {
            lk.lock(); // 加锁
            // 1、判断余额是否足够
            if(this.money >= money){
                System.out.println(name + "来取钱" + money + "成功!");
                this.money -= money;
                System.out.println(name + "来取钱后,余额剩余:" + this.money);
            }else {
                System.out.println(name + "来取钱:余额不足~");
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lk.unlock(); // 解锁
        }
    }
}

运行程序结果,观察是否有线程安全问题。到此三种解决线程安全问题的办法我们就学习完了。

三、线程通信(了解)

接下来,我们学习一下线程通信。

首先,什么是线程通信呢?

  • 当多个线程共同操作共享资源时,线程间通过某种方式互相告知自己的状态,以相互协调,避免无效的资源挣抢。

线程通信的常见模式:是生产者与消费者模型

  • 生产者线程负责生成数据
  • 消费者线程负责消费生产者生成的数据
  • 注意:生产者生产完数据后应该让自己等待,通知其他消费者消费;消费者消费完数据之后应该让自己等待,同时通知生产者生成。

比如下面案例中,有3个厨师(生产者线程),两个顾客(消费者线程)。

assets/1668064583299.png

接下来,我们先分析一下完成这个案例的思路

1.先确定在这个案例中,什么是共享数据?
	答:这里案例中桌子是共享数据,因为厨师和顾客都需要对桌子上的包子进行操作。

2.再确定有那几条线程?哪个是生产者,哪个是消费者?
	答:厨师是生产者线程,3条生产者线程; 
	   顾客是消费者线程,2条消费者线程
	   
3.什么时候将哪一个线程设置为什么状态
	生产者线程(厨师)放包子:
		 1)先判断是否有包子
		 2)没有包子时,厨师开始做包子, 做完之后把别人唤醒,然后让自己等待
		 3)有包子时,不做包子了,直接唤醒别人、然后让自己等待
		 	
	消费者线程(顾客)吃包子:
		 1)先判断是否有包子
		 2)有包子时,顾客开始吃包子, 吃完之后把别人唤醒,然后让自己等待
		 3)没有包子时,不吃包子了,直接唤醒别人、然后让自己等待

按照上面分析的思路写代码。先写桌子类,代码如下

public class Desk {
    private List<String> list = new ArrayList<>();

    // 放1个包子的方法
    // 厨师1 厨师2 厨师3
    public synchronized void put() {
        try {
            String name = Thread.currentThread().getName();
            // 判断是否有包子。
            if(list.size() == 0){
                list.add(name + "做的肉包子");
                System.out.println(name + "做了一个肉包子~~");
                Thread.sleep(2000);

                // 唤醒别人, 等待自己
                this.notifyAll();
                this.wait();
            }else {
                // 有包子了,不做了。
                // 唤醒别人, 等待自己
                this.notifyAll();
                this.wait();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    // 吃货1 吃货2
    public synchronized void get() {
        try {
            String name = Thread.currentThread().getName();
            if(list.size() == 1){
                // 有包子,吃了
                System.out.println(name  + "吃了:" + list.get(0));
                list.clear();
                Thread.sleep(1000);
                this.notifyAll();
                this.wait();
            }else {
                // 没有包子
                this.notifyAll();
                this.wait();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

再写测试类,在测试类中,创建3个厨师线程对象,再创建2个顾客对象,并启动所有线程

public class ThreadTest {
    public static void main(String[] args) {
        //   需求:3个生产者线程,负责生产包子,每个线程每次只能生产1个包子放在桌子上
        //      2个消费者线程负责吃包子,每人每次只能从桌子上拿1个包子吃。
        Desk desk  = new Desk();

        // 创建3个生产者线程(3个厨师)
        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师1").start();

        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师2").start();

        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师3").start();

        // 创建2个消费者线程(2个吃货)
        new Thread(() -> {
            while (true) {
                desk.get();
            }
        }, "吃货1").start();

        new Thread(() -> {
            while (true) {
                desk.get();
            }
        }, "吃货2").start();
    }
}

执行上面代码,运行结果如下:你会发现多个线程相互协调执行,避免无效的资源挣抢。

厨师1做了一个肉包子~~
吃货2吃了:厨师1做的肉包子
厨师3做了一个肉包子~~
吃货2吃了:厨师3做的肉包子
厨师1做了一个肉包子~~
吃货1吃了:厨师1做的肉包子
厨师2做了一个肉包子~~
吃货2吃了:厨师2做的肉包子
厨师3做了一个肉包子~~
吃货1吃了:厨师3做的肉包子

四、线程池

4.1 线程池概述

各位小伙伴,接下来我们学习一下线程池技术。先认识一下什么是线程池技术? 其实,线程池就是一个可以复用线程的技术

要理解什么是线程复用技术,我们先得看一下不使用线程池会有什么问题,理解了这些问题之后,我们在解释线程复用同学们就好理解了。

假设:用户每次发起一个请求给后台,后台就创建一个新的线程来处理,下次新的任务过来肯定也会创建新的线程,如果用户量非常大,创建的线程也讲越来越多。然而,创建线程是开销很大的,并且请求过多时,会严重影响系统性能。

而使用线程池,就可以解决上面的问题。如下图所示,线程池内部会有一个容器,存储几个核心线程,假设有3个核心线程,这3个核心线程可以处理3个任务。

assets/1668065892511.png

但是任务总有被执行完的时候,假设第1个线程的任务执行完了,那么第1个线程就空闲下来了,有新的任务时,空闲下来的第1个线程可以去执行其他任务。依此内推,这3个线程可以不断的复用,也可以执行很多个任务。

assets/1668066073126.png

所以,线程池就是一个线程复用技术,它可以提高线程的利用率。

4.2 创建线程池

在JDK5版本中提供了代表线程池的接口ExecutorService,而这个接口下有一个实现类叫ThreadPoolExecutor类,使用ThreadPoolExecutor类就可以用来创建线程池对象。

下面是它的构造器,参数比较多,不要怕,干就完了_

assets/1668066279649.png

接下来,用这7个参数的构造器来创建线程池的对象。代码如下

ExecutorService pool = new ThreadPoolExecutor(
    3,	//核心线程数有3个
    5,  //最大线程数有5个。   临时线程数=最大线程数-核心线程数=5-3=2
    8,	//临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
    TimeUnit.SECONDS,//时间单位(秒)
    new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
    Executors.defaultThreadFactory(), //用于创建线程的工厂对象
    new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);

关于线程池,我们需要注意下面的两个问题

  • 临时线程什么时候创建?

    新任务提交时,发现核心线程都在忙、任务队列满了、并且还可以创建临时线程,此时会创建临时线程。
    
  • 什么时候开始拒绝新的任务?

    核心线程和临时线程都在忙、任务队列也满了、新任务过来时才会开始拒绝任务。
    

4.3 线程池执行Runnable任务

创建好线程池之后,接下来我们就可以使用线程池执行任务了。线程池执行的任务可以有两种,一种是Runnable任务;一种是callable任务。下面的execute方法可以用来执行Runnable任务。

![(assets/1668066844202.png)

先准备一个线程任务类

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        // 任务是干啥的?
        System.out.println(Thread.currentThread().getName() + " ==> 输出666~~");
        //为了模拟线程一直在执行,这里睡久一点
        try {
            Thread.sleep(Integer.MAX_VALUE);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

下面是执行Runnable任务的代码,注意阅读注释,对照着前面的7个参数理解。

ExecutorService pool = new ThreadPoolExecutor(
    3,	//核心线程数有3个
    5,  //最大线程数有5个。   临时线程数=最大线程数-核心线程数=5-3=2
    8,	//临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
    TimeUnit.SECONDS,//时间单位(秒)
    new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
    Executors.defaultThreadFactory(), //用于创建线程的工厂对象
    new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);

Runnable target = new MyRunnable();
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
//下面4个任务在任务队列里排队
pool.execute(target);
pool.execute(target);
pool.execute(target);
pool.execute(target);

//下面2个任务,会被临时线程的创建时机了
pool.execute(target);
pool.execute(target);
// 到了新任务的拒绝时机了!
pool.execute(target);

执行上面的代码,结果输出如下

assets/1668067745116.png

4.4 线程池执行Callable任务

接下来,我们学习使用线程池执行Callable任务。callable任务相对于Runnable任务来说,就是多了一个返回值。

执行Callable任务需要用到下面的submit方法

assets/1668067798673.png

先准备一个Callable线程任务

public class MyCallable implements Callable<String> {
    private int n;
    public MyCallable(int n) {
        this.n = n;
    }

    // 2、重写call方法
    @Override
    public String call() throws Exception {
        // 描述线程的任务,返回线程执行返回后的结果。
        // 需求:求1-n的和返回。
        int sum = 0;
        for (int i = 1; i <= n; i++) {
            sum += i;
        }
        return Thread.currentThread().getName() + "求出了1-" + n + "的和是:" + sum;
    }
}

再准备一个测试类,在测试类中创建线程池,并执行callable任务。

public class ThreadPoolTest2 {
    public static void main(String[] args) throws Exception {
        // 1、通过ThreadPoolExecutor创建一个线程池对象。
        ExecutorService pool = new ThreadPoolExecutor(
            3,
            5,
            8,
            TimeUnit.SECONDS, 
            new ArrayBlockingQueue<>(4),
            Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.CallerRunsPolicy());

        // 2、使用线程处理Callable任务。
        Future<String> f1 = pool.submit(new MyCallable(100));
        Future<String> f2 = pool.submit(new MyCallable(200));
        Future<String> f3 = pool.submit(new MyCallable(300));
        Future<String> f4 = pool.submit(new MyCallable(400));

        // 3、执行完Callable任务后,需要获取返回结果。
        System.out.println(f1.get());
        System.out.println(f2.get());
        System.out.println(f3.get());
        System.out.println(f4.get());
    }
}

执行后,结果如下图所示

assets/1668067964048.png

4.5 线程池工具类(Executors)

有同学可能会觉得前面创建线程池的代码参数太多、记不住,有没有快捷的创建线程池的方法呢?有的。Java为开发者提供了一个创建线程池的工具类,叫做Executors,它提供了方法可以创建各种不能特点的线程池。如下图所示

assets/1668068110593.png

接下来,我们演示一下创建固定线程数量的线程池。这几个方法用得不多,所以这里不做过多演示,同学们了解一下就行了。

public class ThreadPoolTest3 {
    public static void main(String[] args) throws Exception {
        // 1、通过Executors创建一个线程池对象。
        ExecutorService pool = Executors.newFixedThreadPool(17);
        // 老师:核心线程数量到底配置多少呢???
        // 计算密集型的任务:核心线程数量 = CPU的核数 + 1
        // IO密集型的任务:核心线程数量 = CPU核数 * 2

        // 2、使用线程处理Callable任务。
        Future<String> f1 = pool.submit(new MyCallable(100));
        Future<String> f2 = pool.submit(new MyCallable(200));
        Future<String> f3 = pool.submit(new MyCallable(300));
        Future<String> f4 = pool.submit(new MyCallable(400));

        System.out.println(f1.get());
        System.out.println(f2.get());
        System.out.println(f3.get());
        System.out.println(f4.get());
    }
}

Executors创建线程池这么好用,为什么不推荐同学们使用呢?原因在这里:看下图,这是《阿里巴巴Java开发手册》提供的强制规范要求。

assets/1668068399363.png

五、补充知识

最后,我们再补充几个概念性的知识点,同学们知道这些概念什么意思就可以了。

5.1 并发和并行

先学习第一个补充知识点,并发和并行。在讲解并发和并行的含义之前,我们先来了解一下什么是进程、线程?

  • 正常运行的程序(软件)就是一个独立的进程
  • 线程是属于进程,一个进程中包含多个线程
  • 进程中的线程其实并发和并行同时存在(继续往下看)

我们可以打开系统的任务管理器看看(快捷键:Ctrl+Shfit+Esc),自己的电脑上目前有哪些进程。

assets/1668069176927.png

知道了什么是进程和线程之后,接着我们再来学习并发和并行的含义。

首先,来学习一下什么是并发?

进程中的线程由CPU负责调度执行,但是CPU同时处理线程的数量是优先的,为了保证全部线程都能执行到,CPU采用轮询机制为系统的每个线程服务,由于CPU切换的速度很快,给我们的感觉这些线程在同时执行,这就是并发。(简单记:并发就是多条线程交替执行)

接下,再来学习一下什么是并行?

并行指的是,多个线程同时被CPU调度执行。如下图所示,多个CPU核心在执行多条线程

assets/1668069524799.png

最后一个问题,多线程到底是并发还是并行呢?

其实多个线程在我们的电脑上执行,并发和并行是同时存在的。

5.2 线程的生命周期

接下来,我们学习最后一个有关线程的知识点,叫做线程的生命周期。所谓生命周期就是线程从生到死的过程中间有哪些状态,以及这些状态之间是怎么切换的。

为了让大家同好的理解线程的生命周期,先用人的生命周期举个例子,人从生到死有下面的几个过程。在人的生命周期过程中,各种状态之间可能会有切换,线程也是一样的。

assets/1668069740969.png

接下来就来学习线程的生命周期。在Thread类中有一个嵌套的枚举类叫Thread.Status,这里面定义了线程的6中状态。如下图所示

assets/1668069923403.png

NEW: 新建状态,线程还没有启动
RUNNABLE: 可以运行状态,线程调用了start()方法后处于这个状态
BLOCKED: 锁阻塞状态,没有获取到锁处于这个状态
WAITING: 无限等待状态,线程执行时被调用了wait方法处于这个状态
TIMED_WAITING: 计时等待状态,线程执行时被调用了sleep(毫秒)或者wait(毫秒)方法处于这个状态
TERMINATED: 终止状态, 线程执行完毕或者遇到异常时,处于这个状态。

这几种状态之间切换关系如下图所示

assets/1668070204768.png

标签:执行,Thread,money,线程,day12,new,多线程,public
From: https://www.cnblogs.com/pony1223/p/18462601

相关文章

  • day11-特殊文件、日志技术、多线程
    day11-特殊文件、日志技术、多线程一、属性文件1.1特殊文件概述同学们,前面我们学习了IO流,我们知道IO流是用来读、写文件中的数据。但是我们接触到的文件都是普通的文本文件,普通的文本文件里面的数据是没有任何格式规范的,用户可以随意编写,如下图所示。像这种普通的文本文件,没......
  • 【JavaEE】【多线程】进程与线程的概念
    目录一、进程1.1系统管理进程1.2系统操作进程1.3进程控制块PCB关键属性1.4cpu对进程的操作1.5进程调度二、线程2.1线程与进程2.2线程资源分配2.3线程调度三、线程与进程区别四、线程简单操作代码4.1创建线程4.1.1start()与run()区别4.2查看线程一、进......
  • 【JavaEE】【多线程】Thread类讲解
    目录一、Thread构造方法二、Thread的常见属性三、创建一个线程四、获取当前线程引用五、终止一个线程5.1使用标志位5.2使用自带的标志位六、等待一个线程七、线程休眠八、线程状态九、线程安全9.1线程不安全原因总结9.2解决由先前线程不安全问题例子一、Thre......
  • 代码随想录算法训练营第十二天|Day12二叉树
    递归遍历 题目链接/文章讲解/视频讲解:https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E9%80%92%E5%BD%92%E9%81%8D%E5%8E%86.html思路每次写递归,按照三要素来写,可以写出正确的递归算法!确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要......
  • java 网络知识 + 多线程问题
    服务器:packagep1007;importjava.io.*;importjava.net.*;importjava.util.Random;publicclassServer{publicstaticvoidmain(String[]args){intport=12345;//服务端口try(ServerSocketserverSocket=newServerSocket(port)......
  • 代码随想录算法训练营day12|144.二叉树的前序遍历 94.二叉树的中序遍历 145.二叉
    学习资料:https://programmercarl.com/二叉树理论基础.html二叉树:满二叉树、完全二叉树、二叉搜索数、平衡二叉搜索树;链式存储、顺序存储;前序/中序/后序遍历递归法、迭代法,层序深度优先搜索dfs,广度优先搜索学习记录:144.二叉树的前序遍历(也要注重二叉数的输入方式;递归法比迭......
  • gdb多线程多进程调试命令
    多线程infothreads查看当前所有运行线程的列表thread线程编号 切换到特定线程进行调试setscheduler-lockingon只运行当前线程,停止其他线程进行调试多进程infoinferions显示所有正在调试的进程inferion进程编号 切换到特定进程运行,同时挂起其他进程detach-on-fo......
  • Windows多线程编程 互斥量和临界区使用
    Windows多线程编程允许程序同时运行多个线程,提高程序的并发性和执行效率。多线程编程中的核心概念包括线程的创建、同步、调度、数据共享和竞争条件等。本文详细介绍了Windows多线程编程的关键技术点,并解释如何使用线程同步机制来保证线程安全。1.线程基础概念1.1线......
  • 刷题计划 day12 二叉树(一)【定义】【递归遍历】【迭代遍历】
    ⚡刷题计划day12 二叉树(一)继续,这一小节主要是基础知识,但同样也是十分重要的,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力......
  • Day12-switch
    Day12-switchswitch多选择结构多选择结构还有一个实现方式就是switchcase语句。switchcase语句判断一个变量与一系列值中某个值是否相等:每个值称为一个分支。switch语句中的变量类型可以是:byte、short、int或者char。从JavaSE7,开始switch支持字符串String......