首页 > 其他分享 >[Paper Reading] HPT: Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transform

[Paper Reading] HPT: Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transform

时间:2024-10-11 21:15:17浏览次数:15  
标签:Pre Transformers trained Visual Learning trunk Heterogeneous

目录

Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers

Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers
时间:24.09
机构:MIT&Meta
主页:https://liruiw.github.io/hpt/

TL;DR

由于具身智能在各种本体(例如摆放、Sensor多样性)与任务上泛化性是目前具身智能的一个难点问题,本文通过提出HPT(Heterogeneous Pre-trained Transformers),一种共享Policy NN的Trunk部分预训练参数,来解决该问题。实验证明这种方法在真实与仿真场景下能提升20%的效果。

Method

将一个Policy NN模型定义为stem, trunk, head三部分

Stem

a proprioceptive tokenizer(本体感受) and a vision tokenizer(ResNet backbone),整体参数量占比少。

Trunk

the number of trunk parameters is fixed independent of the number of embodiments and tasks

Loss

In the pre-training stage, only the trunk parameters are updated at every iteration, and the stems and heads for each heterogeneous embodiment and task are updated based on the training batch sampling.

预训练的主体部分,其输入与输出sequence长度是固定的,根据embediements与task来决定使用哪个stem与head。

在多种训练集混合训练中,仅trunk是每个sample都会更新,而head与stem是否更新取决于数据集。

takes as input the pooled feature of the trunk and outputs a normalized action trajectory. The policy head is reinitialized for transferring to a new embodiment.


Experiment


从下面这张图看,Finetuned相对于FromScratch确实有20%以上涨幅度了。

训练资源

The compute resources for these pre-training experiments range from 8 V-100s to 128 V-100s and the training time spans from
half a day to 1 month. The total dataset disk size is around 10Tb and the RAM memory requirement is below 50Gb.

效果可视化

https://liruiw.github.io/hpt/

总结与发散

异构性指得是机器人类型、任务 以及 环境多样性,核心是解决泛化性问题

相关链接

引用的第三方的链接

资料查询

折叠Title FromChatGPT(提示词:XXX)

标签:Pre,Transformers,trained,Visual,Learning,trunk,Heterogeneous
From: https://www.cnblogs.com/fariver/p/18452260

相关文章

  • 界面控件DevExpress WinForms v24.1新版亮点 - 可访问性和UI自动化增强
    DevExpressWinForms拥有180+组件和UI库,能为WindowsForms平台创建具有影响力的业务解决方案。DevExpressWinForms能完美构建流畅、美观且易于使用的应用程序,无论是Office风格的界面,还是分析处理大批量的业务数据,它都能轻松胜任!DevExpressWinForms控件v24.1日前已经全新发布,新......
  • DevExpress WPF中文教程:如何解决数据更新的常见问题?
    DevExpressWPF拥有120+个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpressWPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。无论是Office办公软件的衍伸产品,还是以数据为......