题目
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
要求
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
解法
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
void PreorderTraversal( BinTree BST)
{
if(BST)
{
printf("%d ",BST->Data);
PreorderTraversal(BST->Left);
PreorderTraversal(BST->Right);
}
}
void InorderTraversal(BinTree BST)
{
if(BST)
{
InorderTraversal(BST->Left);
printf("%d ",BST->Data);
InorderTraversal(BST->Right);
}
}
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
BinTree Insert(BinTree BST ,ElementType X)
{
if(BST == NULL)
{
BST = (BinTree)malloc(sizeof(struct TNode));
BST->Left = NULL;
BST->Right = NULL;
BST->Data = X;
}
if(X < BST->Data)
BST->Left = Insert(BST->Left,X);
else if(X > BST->Data)
BST->Right = Insert(BST->Right,X);
return BST;
}
Position FindMin( BinTree BST )
{
if(BST)
while(BST->Left)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST )
{
if(!BST)
return NULL;
while(BST->Right)
BST = BST->Right;
return BST;
}
Position Find( BinTree BST, ElementType X )
{
if(!BST)
return NULL;
else
if(X < BST->Data)
return Find(BST->Left,X);
else if(X > BST->Data)
return Find(BST->Right,X);
else
return BST;
return NULL;
}
BinTree Delete( BinTree BST, ElementType X )
{
if(!BST)
{ printf("Not Found\n");
return NULL;
}
if(X < BST->Data)
BST->Left = Delete(BST->Left,X);
else if(X > BST->Data)
BST->Right = Delete(BST->Right,X);
else
if(BST->Left && BST->Right)
{
BST->Data = FindMin(BST->Right)->Data;
BST->Right = Delete(BST->Right,BST->Data);
}
else
{
BinTree temp = BST;
BST = BST->Left ? BST->Left :BST->Right;
free(temp);
}
return BST;
}
标签:Right,04,BST,BinTree,二叉,Position,数据结构,Data,Left
From: https://blog.csdn.net/2301_80423531/article/details/142798510