首页 > 其他分享 >机器学习/数据分析--用通俗语言讲解时间序列自回归(AR)模型,并用其预测天气,拟合度98%+

机器学习/数据分析--用通俗语言讲解时间序列自回归(AR)模型,并用其预测天气,拟合度98%+

时间:2024-10-10 22:49:17浏览次数:16  
标签:plt -- 回归 df train test data AR 98%

  • 时间序列在回归预测的领域的重要性,不言而喻,在数学建模中使用及其频繁,但是你真的了解ARIMA、AR、MA么?ACF图你会看么?? 时间序列数据如何构造???,我打过不少数学建模,但是都没有弄得很清楚;
  • 这篇将详细讲解了基础模型—AR的原理.

文章目录

1、自回归(AR)详解

1、简要说明

  • 什么是自回归??

自回归:通过过去的数据预测当下的数据,是一个时间序列的基础模型,但是很有效,能够有效的捕捉数据随着时间的变化趋势。

  • 举例解释:

在日常生活中,我们知道一般情况下,当下的气温和前几天的温度是有关系的,比如说这3天很热,明天大概率也会很热,自回归(AR)就是这样的模型,通过前几天的气温预测今天的气温,如:

  1. 今天:20度,记为a,前天:18度,记为b,大前天:22度,记为c,需要预测明天的气温
  2. 明天气温 = k1 * a + k2 * b + k3* c + 随机误差, k1 、 k2 、k3 是权重,这个可以通过计算得出。

2、原理讲解

自回归公式(很像多元线性回归):

​ y t = c + ϕ 1 y t − 1 + ϕ 2 y t − 2 + ⋯ + ϕ p y t − p + ϵ t y_t=c+\phi_1y_{t-1}+\phi_2y_{t-2}+\cdots+\phi_py_{t-p}+\epsilon_t yt​=c+ϕ1​yt−1​+ϕ2​yt−2​+⋯+ϕp​yt−p​+ϵt​

  • ϕ p \phi_p ϕp​这是自回归系数,表示当下p个时间点的数据对要预测的yt 这个时间点的重要程度;
  • c:常数项,就如我们一元回归方差,y = ax + b中的那个b
  • ϵ t \epsilon_t ϵt​:误差项,用来随机生成数据,模拟波动,让预测效果更加贴近实际;
  • p:滞后阶数,表示用前p个数来预测当前的数据。

通过自回归公式,我当时一眼一看,这不就是多元线性回归么?实际也确实是,只是他添加类误差项而已,实际求解的时候,也是通过最小二乘回归求解系数的。

下面是一个用自回归去探究气温的一组案例,需要关注点有两个如下:

  • 怎么构造时间数据???
  • 怎么利用最小二乘回归去求解系数???

3、ACF图

通过查看数的ACF图,在不同用领域有不同的用处,如下:

  • 白噪声过程:时间序列是随机的,没有可预测的结构,即数据之间没有关系。
  • 模型拟合良好:模型已经很好地捕捉了数据中的所有相关信息,残差是随机的。
  • 数据本身没有自相关性:数据中的每个观测值都是独立的没有时间上的依赖关系。
  • 数据预处理的影响:预处理有效地去除了数据中的自相关性

2、案例

数据:该数据描述的是这几百年的地球平均气温,下载地址:kaggle;

目的:大陆平均气温数据的探究,更加理解AR原理以及数学公式。

1、数据预处理

1、导入库

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split

2、读取数据且预处理

data_df = pd.read_csv('GlobalTemperatures.csv')
data_df
dtLandAverageTemperatureLandAverageTemperatureUncertaintyLandMaxTemperatureLandMaxTemperatureUncertaintyLandMinTemperatureLandMinTemperatureUncertaintyLandAndOceanAverageTemperatureLandAndOceanAverageTemperatureUncertainty
01750-01-013.0343.574NaNNaNNaNNaNNaNNaN
11750-02-013.0833.702NaNNaNNaNNaNNaNNaN
21750-03-015.6263.076NaNNaNNaNNaNNaNNaN
31750-04-018.4902.451NaNNaNNaNNaNNaNNaN
41750-05-0111.5732.072NaNNaNNaNNaNNaNNaN
..............................
31872015-08-0114.7550.07220.6990.1109.0050.17017.5890.057
31882015-09-0112.9990.07918.8450.0887.1990.22917.0490.058
31892015-10-0110.8010.10216.4500.0595.2320.11516.2900.062
31902015-11-017.4330.11912.8920.0932.1570.10615.2520.063
31912015-12-015.5180.10010.7250.1540.2870.09914.7740.062

3192 rows × 9 columns

# 只保留日期和LanAverageTemperatrue
data_df = data_df[['dt', 'LandAverageTemperature']]
# 查看数据信息
data_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3192 entries, 0 to 3191
Data columns (total 2 columns):
 #   Column                  Non-Null Count  Dtype  
---  ------                  --------------  -----  
 0   dt                      3192 non-null   object 
 1   LandAverageTemperature  3180 non-null   float64
dtypes: float64(1), object(1)
memory usage: 50.0+ KB
# 缺失值较少,采用前置填充方法
data_df = data_df.fillna(method='ffill')
# 时间转化为datatime格式
data_df['dt'] = pd.to_datetime(data_df['dt'])
# 按照日期排序,确保日期按照顺序
data_df = data_df.sort_values(by='dt')
# 设置日期索引,方便快速查询
data_df.set_index('dt', inplace=True)

# 为了更方便后面展示,这里选取最近1000条数据,全部展示,后面绘图,全都堆到一起
data_df = data_df.tail(1000)

2、实现自回归模型

# 深刻理解代码
def create_lagged_features(data, lag):
    x = []
    y = []
    for i in range(lag, len(data)):
        x.append(data[i - lag : i])
        y.append(data[i])
    return np.array(x), np.array(y)
# 使用 5 阶(联系数学公式) 自回归模型
lag = 5
# 提取特征值,目标值(也就是自变量,因变量)
all_temperature_data = data_df['LandAverageTemperature'].values
# 获取自变量、因变量
X, Y = create_lagged_features(all_temperature_data, lag)
# 分割数据集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

在实际应用中,我们通常会先添加常数项,然后再计算回归系数,因为这样可以保证模型能够捕捉到数据的全局趋势。

# 使用最小二乘法拟合 自回归 模型
def fit_regresiion(x_train, y_train):
    # 添加常数项, b(结合公式),添加一项,为了适应维度
    x_train = np.c_[np.ones(x_train.shape[0]), x_train]
    # 计算回归系数,结合公式 np.linalg.inv 求逆
    beta = np.linalg.inv(x_train.T @ x_train) @ x_train.T @ y_train
    return beta
# 拟合,得到回归系数
beta = fit_regresiion(x_train, y_train)
beta

输出:

array([ 5.07449781, -0.04255702, -0.22825367, -0.2961153 ,  0.06135681,
        0.93721175])

3、模型预测

def predict_ar_model(x, beta):
    # 添加常数项
    x = np.c_[np.ones(x.shape[0]), x]  # 添加常数项
    # 预测
    y_pred = x @ beta   # 自己相乘,结合公式
    return y_pred

# 测试集、训练集测试
y_pred_train = predict_ar_model(x_train, beta)
y_predict_test = predict_ar_model(x_test, beta)

4、数据分析和可视化

1、原始数据时间序列图

plt.figure(figsize=(10, 6))
plt.plot(data_df.index, data_df['LandAverageTemperature'], color='orange', label='Temperature')
plt.title('Global Land Average Temperature Over Time')
plt.xlabel('Year')
plt.ylabel('Temperature')
plt.legend()
plt.grid(True)
plt.show()


在这里插入图片描述

2、训练集和测试集的预测结构对比图

plt.figure(figsize=(10, 6))
plt.plot(y_train, label='Actual Train', color='blue')
plt.plot(y_pred_train, label='Predicr Train', color='red', linestyle='dashed')
plt.title('AR Model')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.grid(True)
plt.show()

plt.figure(figsize=(10, 6))
plt.plot(y_test, label='Actual Test', color='blue')
plt.plot(y_predict_test, label='Predicr Test', color='red', linestyle='dashed')
plt.title('AR Model')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.grid(True)
plt.show()


在这里插入图片描述

在这里插入图片描述

3、残差分析

残差图分析误差

residual = y_test - y_predict_test   # 残差计算
plt.figure(figsize=(10, 6))
plt.plot(residual, color='green', label='Residual')
plt.title('Residual of AR on Test Data')
plt.xlabel('Time')
plt.ylabel('Residual')
plt.legend()
plt.grid(True)
plt.show()


在这里插入图片描述

4、正相关(ACF)

检查残差的自相关性,查看是存在未捕捉时间特征

from statsmodels.graphics.tsaplots import plot_acf

plt.figure(figsize=(10, 6))
plot_acf(residual, lags=50)   # 展示前50个滞后
plt.title('ACF OF RESIDUAL')
plt.grid(True)
plt.show()
<Figure size 1000x600 with 0 Axes>

在这里插入图片描述

  • 默认置信区间,显著性水平是5%
  • acf图中,值接近为0,几乎全在置信区间内,说明残差数据之间没有关系,残差是随机的,模型有效的捕捉到了时间特征

5、结果分析

from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_predict_test)
r2 = r2_score(y_test, y_predict_test)

print('mse: ', mse)
print('r2', r2)
mse:  0.19718326089184698
r2 0.9889418324562267
  • 综上说明模型有效挖掘了天气的规律

标签:plt,--,回归,df,train,test,data,AR,98%
From: https://blog.csdn.net/weixin_74085818/article/details/142714950

相关文章

  • tensorflow快速入门--如何定义张量、定义网络结构、超参数设置、模型训练???
    前言由于最近学习的东西涉及到tensorflow的使用,故先简单的学习了一下tensorflow中如何定义张量、定义网络结构、超参数设置、模型训练的API调用过程;欢迎大家,收藏+关注,本人将持续更新。文章目录1、基本操作1、张量基础操作创建0维度张量创建1维张量创建多维张量2、转换......
  • 【编程小白必看】Python编程练习题元组操作秘籍一文全掌握
    【编程小白必看】Python编程练习题元组操作秘籍......
  • 面试-2024年7月16号
    面试-2024年7月16号自我介绍Mysql主从复制是做了一个什么样的集群?在Mysql的使用过程中遇到过哪些问题?mysql迁移具体步骤mysql漏洞修复是怎么做的。mysql的容灾方案(灾备恢复机制)。redis多节点怎么部署的redis的备份与恢复、迁移原理叙述下个人对k8s的理解etcd的巡检运维怎......
  • 毕业设计项目-基于JavaWeb技术的在线考试系统设计与实现源码+万字论文
    项目简介基于springboot实现的,主要功能如下:技术栈后端框框:springboot/mybatis前端框架:html/JavaScript/Css/vue/elementui运行环境:JDK1.8/MySQL5.7/idea(可选)/Maven3(可选)/tomcat8+(可选)jdk版本:最好是javajdk1.8,我们在这个平台上运行的,其他版本理论上也可以是否需要mave......
  • 20241010
    一、 必看十大类型网站1、数据聚合:大数据导航2、公众号、微博抖音等:清博大数据、微榜、新榜3、浏览数据报告:百度指数、百度搜索、微博指数、360指数、搜狗指数4、研究机构:艾瑞数据、企鹅智库、腾讯研究院、数独、数据局等5、影视综艺分析平台:骨朵数据、猫眼数据分析6、淘......
  • SQL第16课——更新和删除数据
    介绍如何利用update和delete语句进一步操作表数据。16.1更新数据使用update语句。两种使用方式:1.更新表中的特定行;2.更新表中的所有行。!!!(使用update时不要省略where子句,因为容易更新表中的所有行)基本update语句由三部分组成=要更新的表+列名和它们的新值+确定要......
  • innodb内部结构组成InnoDB-spaceID.PageNumber
    17.InnoDB-spaceID.PageNumber 表空间内部组织结构表空间内部由多个段对象(Segment)组成每个段(Segment)由区(Extent)组成每个区(Extent)由页(Page)组成每个页(Page)里面保存数据(或者叫记录Row)段对用户来说是透明的段也是一个逻辑概念目前为止在information_......