首页 > 其他分享 >CF280C Game on Tree题解

CF280C Game on Tree题解

时间:2024-10-01 15:33:20浏览次数:9  
标签:结点 删除 题解 贡献 Game 选中 答案 CF280C 节点

题目描述

给定一棵有根树,结点编号从 1 到 n 。根结点为 1 号结点。对于每一次操作,等概率的选择一个尚未被删去的结点并将它及其子树全部删去。当所有结点被删除之后游戏结束。也就是说,删除 1 号结点后游戏即结束。
要求求出删除所有结点的期望操作次数。


不是哥们,我好不容易国庆回来玩玩 oi ,你就这么恶搞我。

众所周知, \(e=\sum{x_i * p_i}\) ,那么我们累计每个节点对于答案的贡献,如果这个节点不是被选中删除(而是在选中祖先时被连带删除),那么这个节点是不会对答案有贡献的。又考虑到,即使这个节点的所有子节点都被删除,这个节点对答案的贡献也是没有影响的。也就是说一个节点的贡献跟它的子树是没有关系的。

那么我们就意识到,一个节点只会在从自己到根节点的链上的一个节点被删除的时候才会被删除,而且只有它自己被选中删除这一种情况下,这个节点会对答案有贡献。而且进一步思考,在整棵树的状况一定时,这条链上的每个节点被选中的概率是相同的,那么一个节点被选中并删除的概率就必然是 \(\frac{1}{dep_x}\) ,那么也就是说 \(ans=\sum{\frac{1}{dep_x}}\)

标签:结点,删除,题解,贡献,Game,选中,答案,CF280C,节点
From: https://www.cnblogs.com/caijiLYC/p/18442901

相关文章

  • 题解:AtCoder Beginner Contest AT_abc373_d ABC373D Hidden Weights(格式美化版)
    题目传送门题目翻译给你一个NNN个点,MMM条边的有向图,其中边有边......
  • CF429E Points and Segments 题解
    题目链接点击打开链接题目解法真难啊/yun把区间染成红色看作区间\(+1\),染成蓝色看作区间\(-1\),要求是每个点上的数\(\in\{-1,0,1\}\)可以选择的数有\(-1,1\)不太好做,我们考虑将限制变成每个点上的数只能为\(0\)我们记经过点\(x\)的线段数量为\(cnt_x\)如果\(cnt......
  • 题解:P11075 不等关系 加强版
    这是洛谷转移过来的题解,作者是4041nofoundGeoge(我自己,记得关注呀)题目大意对于一个字符串s1,s......
  • [HNOI2010] 城市建设 题解
    题意给定一个图,每次修改一条边的边权,每次修改后输出该图的最小生成树边权和,询问间不独立。思路在线不好做,考虑离线下来,可以使用线段树分治。我们称在当前区间\(\left[l,r\right]\)的边为动态边,不在的边为静态边。但这样每次遍历到叶子节点的时候静态边的数量都是\(m\)的......
  • 【洛谷】AT_abc079_d [ABC079D] Wall 的题解
    【洛谷】AT_abc079_d[ABC079D]Wall的题解洛谷传送门AT传送门题解不懂就问,为什么ABC很喜欢出板子题。经典的Floydqaq题目给出了一个二维数组和000~......
  • 题解 CF1785D - Range = √Sum
    link\(\texttt{Describe}\)构造有\(n\)个数的序列,满足以下条件:\(\foralli\in[1,n]\)并且\(1\lea_i\le10^9\)。对于任何的\(1\lei,j\len(i\nej)\),\(a_i\nea_j\)。\((\max_{i=1}^{n}a_i-\min_{i=1}^{n}a_i)^2=\sum_{i=1}^{n}a_i\)。......
  • vscode 运行 C++分文件显示 undefined reference to 问题解决
    一、问题无法关联到对应的方法。  二、结局方法1、第一步,查看.vsode文件夹里面的task.json文件;设置里面参数;${file}改成 ${fileDirname}\\*.cpp 2、第二步 2.1、打开coderunner的setting.json文件; 2.2、将 $fileName改成*.cpp 3.3、最后起哄一下vs......
  • 题解:P11062 【MX-X4-T2】「Jason-1」加法
    考虑两种情况:\(a,b\)符号相同:考虑经过操作后\(a,b,\lverta-b\rvert\)会变成什么。:\(a\)\(b\)\(\lverta-b\rvert\)操作1\(a+b\)\(b\)\(\lverta\rvert\)操作2\(a\)\(a+b\)\(\lvertb\rvert\)可以看出只进行零次或一次操作后可以取到最小值......
  • 题解:P11129 【MX-X5-T1】「GFOI Round 1」Inverted World
    题目要求:\((a_l+\cdots+a_r)\div(r-l+1)\)是整数。即\(\frac{(a_l+a_r)\cdot(r-l+1)\div2}{r-l+1}\)为整数。即\(\frac{(a_l+a_r)}{2}\)为整数。即\(a_l+a_r\)为偶数。即\(m+(l-1)\cdotd+m+(r-1)\cdotd\)为偶数。即\(2m+(l+r-2)\cdotd\)为偶......
  • 大单元综合测试(一):第一章,第二章题解
    \(6.\)已知\(3a>b>0\),则\(\large\frac{a}{3a-b}-\frac{b}{a+b}\)的最小值为多少?基本方法\(\qquad\)对于高中基本不等式,这种分母较为复杂的求最值问题,我们一般都会采用将分母换元换元的方法,理由很自然,因为分式是分子除分母,所以分母形式的简单可以方便我们对问题的处理。那么......