### 思路
1. **递归定义**:根据阿克曼函数的定义,使用递归来计算函数值。
2. **递归终止条件**:
- 当 `m == 0` 时,返回 `n + 1`��
- 当 `m > 0` 且 `n == 0` 时,返回 `ackermann(m - 1, 1)`。
- 当 `m > 0` 且 `n > 0` 时,返回 `ackermann(m - 1, ackermann(m, n - 1))`。
### 伪代码
```
function ackermann(m, n):
if m == 0:
return n + 1
else if m > 0 and n == 0:
return ackermann(m - 1, 1)
else if m > 0 and n > 0:
return ackermann(m - 1, ackermann(m, n - 1))
function main():
read m, n
result = ackermann(m, n)
print result
```
### C++代码
#include <iostream>
using namespace std;
int ackermann(int m, int n) {
if (m == 0) {
return n + 1;
} else if (m > 0 && n == 0) {
return ackermann(m - 1, 1);
} else if (m > 0 && n > 0) {
return ackermann(m - 1, ackermann(m, n - 1));
}
return -1; // This line should never be reached
}
int main() {
int m, n;
cin >> m >> n;
cout << ackermann(m, n) << endl;
return 0;
}
标签:ackermann,18937,return,递归,int,Ackmann,else,阿克曼,###
From: https://blog.csdn.net/huang1xiao1sheng/article/details/142451005