首页 > 其他分享 >20240925

20240925

时间:2024-09-26 10:33:52浏览次数:9  
标签:int tr mid long cin 20240925 query

2集合間距離

有两种方法,我选择了更劣的做法,呜呜呜!我是暴力枚举每个点,然后对与另一个集合里的点枚举横坐标,用二分找到纵坐标上距离最小的点, \(xhr\) 写的是直接多源广搜,我的时间复杂度为 \(O(n * 1000)\),他的时间复杂度为 \(O(n)\),在线膜拜

#include <bits/stdc++.h>

using namespace std;

#define int long long

const int N = 2e5 + 5, M = 1e3 + 5;

int n, x[N], y[N], m, ans = 1e18, l[M][M], r[M][M];

vector<int> v[N];

signed main() {
  for (int i = 0; i <= 1000; i++) {
    v[i].push_back(-1e18);
    v[i].push_back(1e18);
  }
  cin >> n;
  for (int i = 1; i <= n; i++) {
    cin >> x[i] >> y[i];
  }
  cin >> m;
  for (int i = 1, _x, _y; i <= m; i++) {
    cin >> _x >> _y;
    v[_x].push_back(_y);
  }
  for (int i = 0; i <= 1000; i++) {
    sort(v[i].begin(), v[i].end());
    for (int j = 0; j <= 1000; j++) {
      auto tmp = upper_bound(v[i].begin(), v[i].end(), j) - v[i].begin() - 1;
      l[i][j] = v[i][tmp];
      tmp = lower_bound(v[i].begin(), v[i].end(), j) - v[i].begin();
      r[i][j] = v[i][tmp];
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = 0; j <= 1000; j++) {
      ans = min(ans, abs(x[i] - j) + min(y[i] - l[j][y[i]], r[j][y[i]] - y[i]));
    }
  }
  cout << ans;
  return 0;
}

Star Divine

两种做法,一种是随机化,我们可以随机红色的点选哪些,然后对于每一个蓝色的点看与他相连的红点有多少,奇数个就选,这个做法由于红色的点每个有二分之一的概率会选到,蓝色也一样,所以期望的随机次数就是一次.还有一种正解做法,考虑如果当前的蓝点选或不选,如果选的话会产生多少贡献,不选的话会产生多少贡献,如果一样的话随便哪个,由于每次选的都一定大于等于二分之一,所以最终选出的点数也一定大于等于二分之一

#include <bits/stdc++.h>

using namespace std;

using Pii = pair<long long, long long>;

#define int long long

mt19937_64 rnd(time(0));

const int N = 1e5 + 5;

int t, x, y, m, vis[N];

set<Pii> s;

vector<int> g[N];

void Solve() {
  cin >> x >> y >> m;
  for (int i = 1; i <= x; i++) {
    g[i].clear();
  }
  for (int i = 1, u, v; i <= m; i++) {
    cin >> u >> v;
    s.insert({u, v});
  }
  while (!s.empty()) {
    auto cur = *s.begin();
    s.erase(s.begin());
    g[cur.first].push_back(cur.second);
  }
  while (true) {
    int cnt = 0;
    for (int i = 1; i <= y; i++) {
      vis[i] = rnd() % 2;
      cnt += vis[i];
    }
    for (int i = 1; i <= x; i++) {
      int tmp = 0;
      for (auto v : g[i]) {
        tmp += vis[v];
      }
      if (tmp % 2 == 1) {
        cnt++;
      }
    }
    if (cnt >= (x + y + 1) / 2) {
      break;
    }
  }
  vector<int> ans1, ans2;
  for (int i = 1; i <= y; i++) {
    if (vis[i] == true) {
      ans2.push_back(i);
    }
  }
  for (int i = 1; i <= x; i++) {
    int tmp = 0;
    for (auto v : g[i]) {
      tmp += vis[v];
    }
    if (tmp % 2 == 1) {
      ans1.push_back(i);
    }
  }
  cout << ans1.size() << " " << ans2.size() << "\n";
  for (auto cur : ans1) {
    cout << cur << " ";
  }
  cout << "\n";
  for (auto cur : ans2) {
    cout << cur << " ";
  }
  cout << "\n";
}

signed main() {
  ios::sync_with_stdio(0);
  cin.tie(0);
  cin >> t;
  while (t--) {
    Solve();
  }
  return 0;
}

Logical Sum of Substring

这题我们考虑直接暴力线段树,那么我们可以维护当前的答案,在二进制位上的第 \(i\)位为一是的最小出现位置与最大出现位置即可

#include <bits/stdc++.h>

using namespace std;

#define int long long

const int N = 2e5 + 5, M = 17, INF = 1e18;

int n, k, a[N], q;

struct node {
  int ans, maxi[M], mini[M];
  void clean() {
    ans = INF;
    for (int i = 0; i <= k; i++) {
      maxi[i] = -INF;
      mini[i] = INF;
    }
  }
}tr[N * 4], CANT, tmp;

node Merge(node l, node r) {
  node m;
  m.clean();
  m.ans = min(l.ans, r.ans);
  vector<int> v;
  for (int i = 0; i <= k; i++) {
    m.maxi[i] = max(l.maxi[i], r.maxi[i]);
    m.mini[i] = min(l.mini[i], r.mini[i]);
    if (l.maxi[i] != -INF) {
      v.push_back(l.maxi[i]);
    }
    if (r.mini[i] != INF) {
      v.push_back(r.mini[i]);
    }
  }
  if (m.ans == 1) {
    return m;
  }
  sort(v.begin(), v.end());
  for (int i = 0; i < v.size(); i++) {
    int tot = 0;
    for (int j = i; j < v.size(); j++) {
      tot |= a[v[j]];
      if (tot == ((1 << k) - 1)) {
        m.ans = min(m.ans, v[j] - v[i] + 1);
        break;
      }
    }
  }
  return m;
}

void build(int i, int l, int r) {
  if (l == r) {
    tr[i].clean();
    if (a[l] == ((1 << k) - 1)) {
      tr[i].ans = 1;
    }
    for (int j = 0; j <= k; j++) {
      if ((a[l] & (1 << j))) {
        tr[i].maxi[j] = l, tr[i].mini[j] = l;
      }
    }
    return ;
  }
  int mid = (l + r) >> 1;
  build(i * 2, l, mid);
  build(i * 2 + 1, mid + 1, r);
  tr[i] = Merge(tr[i * 2], tr[i * 2 + 1]);
}

void change(int i, int l, int r, int p, int x) {
  if (l == r) {
    a[l] = x;
    tr[i].clean();
    if (a[l] == ((1 << k) - 1)) {
      tr[i].ans = 1;
    }
    for (int j = 0; j <= k; j++) {
      if ((a[l] & (1 << j))) {
        tr[i].maxi[j] = l, tr[i].mini[j] = l;
      }
    }
    return ;
  }
  int mid = (l + r) >> 1;
  if (mid >= p) {
    change(i * 2, l, mid, p, x);
  }
  else change(i * 2 + 1, mid + 1, r, p, x);
  tr[i] = Merge(tr[i * 2], tr[i * 2 + 1]);
}

void query(int i, int l, int r, int x, int y) {
  if (l > y || r < x) {
    return ;
  }
  if (l >= x && r <= y) {
    tmp = Merge(tmp, tr[i]);
    return ;
  }
  int mid = (l + r) >> 1;
  query(i * 2, l, mid, x, y);
  query(i * 2 + 1, mid + 1, r, x, y);
}

signed main() {
  ios::sync_with_stdio(0);
  cin.tie(0);
  CANT.clean();
  cin >> n >> k;
  for (int i = 1; i <= n; i++) {
    cin >> a[i];
  }
  build(1, 1, n);
  cin >> q;
  while (q--) {
    int opt, x, y;
    cin >> opt >> x >> y;
    if (opt == 1) {
      change(1, 1, n, x, y);
    }
    else {
      tmp.clean();
      query(1, 1, n, x, y);
      if (tmp.ans == INF) {
        cout << "-1\n";
      }
      else cout << tmp.ans << "\n";
    }
  }
  return 0;
}

标签:int,tr,mid,long,cin,20240925,query
From: https://www.cnblogs.com/libohan/p/18432976

相关文章

  • 20240925 随机训练
    Yukicoder2897题目描述给定两个点集\(S,T\),我们定义\(d((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|\)。我们定义两个集合\(S,T\)的距离\(D(S,T)=\min\limits_{s\inS,t\inT}\{d(s,t)\}\)。求\(D(S,T)\)。思路我们把每个\(S\)中的元素放在一起做一个多源bfs,然后对......
  • 20240925 模拟赛总结
    期望得分:100+85+30+0=215实际得分:100+65+30+0=195。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。还是没啥长进哈。T1二进制位数是关键一招,位数相同怎么异或都会小,位数不同怎么异或都......