首页 > 其他分享 >ElasticSearch的安装与使用

ElasticSearch的安装与使用

时间:2024-09-25 13:18:53浏览次数:3  
标签:index 查询 索引 ElasticSearch 使用 test elasticsearch 安装 match

ElasticSearch的安装与使用

docker安装

docker进行安装Elasticsearch

在这里插入图片描述

1.拉取镜像
docker pull elasticsearch:7.6.2
2.创建实例
mkdir -p /docker/elasticsearch/config
mkdir -p /docker/elasticsearch/data
echo "http.host: 0.0.0.0" >> /docker/elasticsearch/config/elasticsearch.yml
chmod -R 777 /docker/elasticsearch/ 
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms256m -Xmx512m" \
-v /docker/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /docker/elasticsearch/data:/usr/share/elasticsearch/data \
-v /docker/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.6.2

-e ES_JAVA_OPTS="-Xms256m -Xmx512m 设置 ES 的初始内存和最大内存

docker进行安装Kibana

在这里插入图片描述

1.拉取镜像
docker pull kibana:7.6.2 可视化界面
2.创建实例
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://<你的虚拟机ip>:9200 -p 5601:5601 \
-d kibana:7.4.2

Elasticsearch的简单使用

倒排索引机制

mysql这种就是正向索引,倒排索引就是相当于先找词,再通过词对应id去找内容

进入kibana

  • 进入 <你的ip地址>:5601
    在这里插入图片描述

基础命令

GET /_cat/nodes
# 查看所有节点
GET /_cat/health
# 查看 es 健康状况
GET /_cat/master
# 查看主节点
GET /_cat/indices
# 查看所有索引

1.增加

  • 在 test 索引下的 filed 类型下保存 1 号数据
PUT test/filed/1
{ 
	"name": "Your Name"
}

事实上POST 与 PUT都可以
POST 新增。如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号
PUT 可以新增可以修改。从、但PUT 必须指定 id;

2.查询

  • 去查询我们刚刚插入的数据
GET test/filed/1
  • 结果:
{
  "_index" : "test",
  "_type" : "filed",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "Your Name"
  }
}

3.更新

POST test/filed/1/_update
{ 
	"doc":{ 
		"name": "Your Name1"
	}
}
POST test/filed/1
{ 
	"name": "Your Name2"
}
PUT test/filed/1
{ 
	"name": "Your Name3"
}

那么这几种方式有什么不同呢?

不同:POST 操作会对比数据,如果相同不会有什么操作,文档 version 不增加,PUT 操作总会将数据重新保存并增加 version 版本;
_update对比元数据如果一样就不进行任何操作。

version有什么用?

  • version 版本号 – 7之前用来做乐观锁
  • seq_no 更新次数 – 7用来做乐观锁

4.删除

DELETE test/filed/1
DELETE test

5.批量操作

POST test/filed/_bulk
{"index":{"_id":"1"}}
{"name":"Your Name1"}
{"index":{"_id":"2"}}
{"name":"Your Name2"}`

Elasticsearch进阶

SearchAPI

ES 支持两种基本方式检索

1. 通过使用 REST request URI 发送搜索参数(uri+检索参数)

这种方式是通过在请求的查询字符串中添加搜索参数来实现的。这种方式比较简单,适合快速查询和简单的参数传递。以下是一个使用 URI 参数进行搜索的例子:

GET /test_index/_search?q=name:John

在这个例子中,/test_index/_search 是请求的路径,?q=name:John 是查询参数,表示我们想要检索索引为 test_index 中 name 字段值为 “John” 的文档。

优点:

简单易用,适合快速查询。
适合传递简单的查询参数。

缺点:

查询字符串长度有限制。
对于复杂的查询,可能难以阅读和编写。
查询参数可能被URL编码,导致查询字符串复杂。

2.通过使用 REST request body 来发送它们(uri+请求体)

这种方式是通过在请求的正文(body)中发送搜索参数来实现的。这种方式可以处理复杂的查询,并且提供了更多的灵活性,尤其是对于结构化查询(如 JSON 格式的查询)。
以下是一个使用请求体发送搜索查询的例子:

POST /test_index/_search
{
  "query": {
    "match": {
      "name": "John"
    }
  }
}

在这个例子中,/test_index/_search 是请求的路径,请求体是一个 JSON 对象,包含了查询信息。

优点:

支持复杂的查询,包括结构化查询。
请求体是 JSON 格式,便于阅读和编写。
可以发送任何 JSON 数据,包括复杂的查询结构。

缺点:

相比查询字符串,可能更复杂。
需要更多的HTTP请求体处理。

Query DSL

1. 基本语法格式
  • Elasticsearch的Query DSL使用JSON格式来构建查询。基本格式如下:
{
  "QUERY_NAME": {
    "ARGUMENT": "VALUE",
    "ARGUMENT": "VALUE",
    // ...其他参数
  }
}
对于字段特定的查询,格式如下:

{
  "QUERY_NAME": {
    "FIELD_NAME": {
      "ARGUMENT": "VALUE",
      // ...其他参数
    }
  }
}

QUERY_NAME 是查询的类型,例如 match_all、match、match_phrase 等。

2. 检索信息
  • 查询所有文档
GET /test_index/_search
{ "query": { "match_all": {} } }
  • 返回部分字段
GET /test_index/_search
{ "query": { "match_all": {} }, "_source": ["age", "balance"] }
3. Match 查询
GET /test_index/_search
{ "query": { "match": { "account_number": "20" } } }

Match 查询适用于字符串和基本类型,可以精确匹配或进行全文检索。

  • Match_phrase 查询
GET /test_index/_search
{ "query": { "match_phrase": { "address": "mill road" } } }
Match_phrase 查询用于短语匹配,不会对短语进行分词。
  • Multi_match 查询
GET /test_index/_search
{ "query": { "multi_match": { "query": "mill", "fields": ["state", "address"] } } }

Multi_match 查询可以在多个字段上执行匹配。

4.Bool 查询

Bool 查询允许组合多个查询:

  • must:所有条件都必须匹配。
  • should:至少有一个条件匹配。
  • must_not:条件必须不匹配。
GET /test_index/_search
{ "query": { "bool": { "must": [{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }], "should": [{"match": { "address": "lane" }}], "must_not": [{"match": { "email": "baluba.com" }}] } } }
5.Filter 查询
  • Filter 查询不返回相关性分数,适用于过滤操作。
GET /test_index/_search
{ "query": { "bool": { "must": [{"match": {"address": "mill"}}], "filter": {"range": {"balance": {"gte": 10000, "lte": 20000}}} } } }
6.Term 查询
  • Term 查询用于精确匹配非字符串字段。
GET /test_index/_search
{ "query": { "bool": { "must": [{"term": {"age": {"value": "28"}}}, {"match": {"address": "990 Mill Road"}}] } } }
7. 聚合(Aggregations)
  • 聚合用于从数据中提取统计信息。
GET /test_index/_search
{ "query": { "match": { "address": "mill" } }, "aggs": { "group_by_state": { "terms": { "field": "age" }

Mapping

Mapping(映射)在Elasticsearch中扮演着至关重要的角色,它定义了索引中每个字段的类型、索引方式以及其他一些行为。以下是关于Mapping的详细解释:

1. 字段类型

字段类型(Field Type)是Elasticsearch中用于指定字段数据类型的关键。常见的字段类型包括:

  • keyword:适合精确匹配,如用于过滤、排序和聚合。
  • text:用于全文搜索,索引时会进行分词。
  • integer、long、float、double:用于数字类型的字段。
  • date:用于日期类型的字段。
  • boolean:用于布尔类型的字段。
  • ip、geo_point、geo_shape:用于地理信息字段。
2. 映射

Mapping定义了每个字段的类型、是否被索引、是否分析以及各种其他属性。以下是一些关于映射的要点:
映射可以在创建索引时指定。
映射可以在索引创建后添加或更新,但通常建议在索引创建时完成。
映射定义了字段如何被存储和索引,包括分词器、分析器和索引选项。

#查看映射信息
GET /my-index/_mapping

#修改映射信息
#创建索引并指定映射:
PUT /my-index
{ "mappings": { "properties": { "age": { "type": "integer" }, "email": { "type": "keyword" }, "name": { "type": "text" } } } }

#添加新的字段映射:
PUT /my-index/_mapping
{ "properties": { "employee-id": { "type": "keyword", "index": false } } }

#更新映射:
#由于Elasticsearch不允许直接更新现有字段的映射,如果需要更新映射,通常的做法是创建一个新的索引并重新索引所有数据。
3.数据迁移

1.创建具有新映射的新索引。
2.使用 _reindex API将旧索引的数据迁移到新索引。
例如:

POST _reindex
{ "source": { "index": "twitter" }, "dest": { "index": "new_twitter" } }
  • 对于包含多类型的旧索引,可以指定类型进行迁移:
POST _reindex
{ "source": { "index": "twitter", "type": "tweet" }, "dest": { "index": "tweets" } }
4.新版本改变

Elasticsearch 7.x及以后版本移除了type的概念,这是因为不同类型的相同字段在Lucene中会被视为同一个字段,这可能导致性能问题。以下是几个重要变化:
Elasticsearch 7.x:URL中的type参数为可选。
Elasticsearch 8.x:不再支持URL中的type参数。
为了解决这些问题,通常的做法是将索引从多类型迁移到单类型,或者将类型数据迁移到新的索引中。

标签:index,查询,索引,ElasticSearch,使用,test,elasticsearch,安装,match
From: https://blog.csdn.net/2301_77207909/article/details/142487380

相关文章

  • .NET 6.0 + WPF 使用 Prism 框架实现导航
    .NET6.0+WPF使用Prism框架实现导航 合集-.NET基础知识(4) 1..NET9优化,抢先体验C#13新特性08-202.《黑神话:悟空》神话再现,虚幻引擎与Unity/C#谁更强?08-213..NET6.0+WPF使用Prism框架实现导航09-114.2024年C#高效开发:精选实用类库09-23收起 ......
  • 前端使用xlsx模板导出表格
    前端使用xlsx模板导出表格 前言前端导出表格有很多种方案,但是表格样式一旦复杂了,那么就得用代码写excel的样式,还是比较麻烦的。每次样式不一样,就得重新写,这时使用表格模板的优势就体现出来了,想导出不同样式的表格直接修改表格模板即可。方案我找了两种方案:1、使用xlsx-tem......
  • 在Ubuntu 16.04上安装Anaconda Python发行版的方法
    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。简介Anaconda是一个开源的包管理器、环境管理器和Python和R编程语言的发行版。它通常用于大规模数据处理、科学计算和预测性分析,为数据科学家、开发人员、业务分析师......
  • Nuxt Kit 实用工具的使用示例
    title:NuxtKit实用工具的使用示例date:2024/9/25updated:2024/9/25author:cmdragonexcerpt:摘要:本文介绍了NuxtKit工具在开发集成工具或插件时,如何访问和修改Nuxt应用中使用的Vite或webpack配置,以实现定制化构建需求。内容包括功能概述、项目示例、详细步骤说明了......
  • 如何使用 Bittly 为串口设备快速创建上位机
    在开发硬件设备或嵌入式系统时,串口通讯(SerialCommunication)是非常常见的一种数据传输方式。为了更高效地测试串口通讯并快速执行各种命令操作,您可以通过Bittly的面板功能将串口通讯相关操作封装成易用的UI控制面板,简化操作并提升开发效率。准备在开始之前,您需要确保......
  • WINCCV7.5SP2使用VBA一次性添加多个IO域控件,并设置属性和其连接的变量
    这篇博客发表在某浪上,截至目前还没有通过审查,在这里也发一遍。前面的练习是先在页面手工放置IO域,然后使用VBA脚本批量设置连接的变量。这个练习进一步,使用VBA脚本创建IO域控件,并设置连接的变量。这个练习自动创建20个IO域,名字叫做IO1至IO20,并设置其连接的变量,为Real1至Real20;IO域......
  • 我的网站集成ElasticSearch初体验
    我的网站集成ElasticSearch初体验   最近,我给我的网站(https://www.xiandanplay.com/)尝试集成了一下es来实现我的一个搜索功能,因为这个是我第一次了解运用elastic,所以如果有不对的地方,大家可以指出来,话不多说,先看看我的一个大致流程   这里我采用的sdk的版本是El......
  • FFmpeg开发笔记(五十四)使用EasyPusher实现移动端的RTSP直播
    FFmpeg开发笔记(五十四)使用EasyPusher实现移动端的RTSP直播 合集-FFmpeg开发实战(55)  ​之前的文章《利用RTMP协议构建电脑与手机的直播Demo》介绍了如何使用RTMPStreamer实现完整的RTMP直播流程,另一篇文章《利用SRT协议构建手机APP的直播Demo》介绍了如何使用SRT......
  • FFmpeg开发笔记(五十四)使用EasyPusher实现移动端的RTSP直播1111
    FFmpeg开发笔记(五十四)使用EasyPusher实现移动端的RTSP直播 合集-FFmpeg开发实战(55)  ​之前的文章《利用RTMP协议构建电脑与手机的直播Demo》介绍了如何使用RTMPStreamer实现完整的RTMP直播流程,另一篇文章《利用SRT协议构建手机APP的直播Demo》介绍了如何使用SRT......
  • SimpleAIAgent:使用免费的glm-4-flash即可开始构建简单的AI Agent应用
    SimpleAIAgent是基于C#SemanticKernel与WPF构建的一款AIAgent探索应用。主要用于使用国产大语言模型或开源大语言模型构建AIAgent应用的探索学习,希望能够帮助到感兴趣的朋友。接下来我想分享一下我的AIAgent应用实践。翻译文本并将文本存入文件第一个例子是翻译文本,并将......