实验6:开源控制器实践——RYU
一、实验目的
- 能够独立部署RYU控制器;
- 能够理解RYU控制器实现软件定义的集线器原理;
- 能够理解RYU控制器实现软件定义的交换机原理。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
- 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。
- 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。
L2Switch代码
h1 ping h2
h1 ping h3
L2Switch和POX的Hub模块有何不同?
L2Switch模块POX的Hub模块
- 编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)
(二)进阶要求
- 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
a) 代码当中的mac_to_port的作用是什么?答:mac_to_port的作用是保存mac地址到交换机端口的映射。
b) simple_switch和simple_switch_13在dpid的输出上有何不同?答:simple_switch直接输出dpid,simple_switch_13对dpid进行了格式化,并填充为16位数字,会在不满16位的dpid前补0直到满16位。
c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?答:实现了交换机以特性应答消息来响应特性请求的功能。
d) simple_switch_13是如何实现流规则下发的?答:在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。
e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?答:switch_features_handler下发流表的优先级比_packet_in_handler的优先级高。
- 编程实现和ODL实验的一样的硬超时功能。