题意
第一行输入三个整数 \(n,m,d(1 \leq n \leq 2 * 10^5, n \leq m \leq 10^9, 1 \leq d \leq n)\),第二行输入 \(n\) 个整数,保证每个数均不大于 \(m\)。
在每一天你都可以任意选择一个未选过的数 \(a_i\),随后可以继续选任意一个大于 \(a_i + d\) 的数 \(a_j\);接下来可以再选任意一个大于 \(a_j + d\) 的数 \(a_k\);最后重复执行上述步骤。
问:最少需要多少天,可以选完全部的数?
题解
先给结论:先从小到大排序,然后选中剩下的数组的第一个数 \(a_0\),随后选中数组中第一个满足 \(a_i \geq a_0 + d + 1\) 的数 \(a_i\),下一步再选中数组中第一个满足 \(a_j \geq a_i + d\) 的数 \(a_j\),形成的子数组数目便是答案。
疑问解析:为什么优先选择最小的满足 \(a_j \geq a_i + d + 1\)的数是正确的?
答:不妨假设数组排序后为 \(a_0, a_1, ..., a_i, a_j, ..., a_n\),且 \(a_i\) 是最小的满足大于 \(a_0 + d\) 的数。那么明显在选中 \(a_0\) 的下一步,既可以选择 \(a_i\),也可以选择 \(a_j\)。此时若 \(a_j - a_i \leq d\),那明显二者至多只能够选其一,那么无论选择哪一个,都必然意味着需要另外再选择出一个子数组。但如果 \(a_j - a_i \geq d + 1\),就可以先选 \(a_i\) 而后一并选上 \(a_j\)。因此,先选较小者更优。
接下来分析具体代码实现:
如何在数组中找出第一个比选中的数大 \(d\) 以上的数呢?
明显可以线性查找,但是当数组中任意两个数的差值均小于 \(d\) 时,时间复杂度为 \(O(n^2)\),明显不符合要求
观察我们的前置条件排序,所以可以考虑使用二分法来使得查找的时间复杂度降低为 \(O(logn)\)
如何选择过的数从数组中移除呢?
若通过类似插入排序等思路,时间复杂度为 \(O(n^2)\),明显不符合要求
此时思考:既要排序,又要可以二分,还要支持快速删除,我们可以联想到红黑树的性质,但是手撕红黑树太硬核了,可以借助 \(set\) 或 \(map\) 实现,这二者的查找/插入/删除/修改操作时间复杂度都是 \(O(logn)\),符合时间复杂度要求。
参考代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
using namespace std;
constexpr int INF = 0x3f3f3f3f;
constexpr int N = 2e5 + 7;
int n, m, d, cnt, a;
int ans[N];
int main() {
IOS
set<PII> st;
cin >> n >> m >> d;
for (int i = 0; i < n; ++ i) {
cin >> a;
st.insert(PII(a, i));
}
while (!st.empty()) {
auto f = st.begin();
int key = (*f).first;
ans[(*f).second] = ++ cnt;
st.erase(f);
while (!st.empty()) {
auto ne = st.upper_bound(PII(key + d, INF));
if (ne != st.end()) {
key = (*ne).first;
ans[(*ne).second] = cnt;
st.erase(ne);
} else break;
}
}
cout << cnt << '\n';
for (int i = 0; i < n; ++ i) cout << ans[i] << ' ';
return 0;
}
标签:1041,int,ne,复杂度,codeforces,st,Break,leq,数组
From: https://www.cnblogs.com/RomanLin/p/18425870