首页 > 其他分享 >基于OpenCV的单目测距

基于OpenCV的单目测距

时间:2024-09-21 12:20:23浏览次数:10  
标签:frame OpenCV 单目 测距 cv rect contours

随着计算机视觉技术的发展,单目测距作为一种重要的视觉测量手段,在众多领域得到了广泛的应用。本文将探讨基于OpenCV的单目测距原理、局限性、实际应用场景以及一些优化方案。

单目测距的原理


单目测距是指利用一台摄像机拍摄到的单一图像来进行距离测量的技术。与双目测距相比,单目测距不需要复杂的立体匹配算法,因此具有计算量小、实现简单的特点。然而,单目测距也面临着许多挑战,如尺度模糊性、深度信息缺乏等问题。

单目测距的核心在于如何利用已知的几何关系来推算未知的距离。这通常涉及到特征点检测、特征匹配、相机标定等步骤。首先,通过对图像中的物体进行特征检测(如角点、边缘等),然后利用这些特征点与相机之间的几何关系来估计物体的距离。在此过程中,相机的内参(焦距、光心位置等)和外参(旋转矩阵和平移向量)是非常关键的参数,这些参数通常通过相机标定获得。

for (;;) {
            capture >> frame;
            if (frame.empty()) {
                printf("The frame is empty.\n");
                break;
            }
            cv::medianBlur(frame, frame, 3);

            cv::Mat grayImage;
            cv::cvtColor(frame, grayImage, cv::COLOR_BGR2GRAY);
            // otsu 可以换用动态阈值
            cv::threshold(grayImage, grayImage, NULL, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);

            vector<vector<cv::Point>> contours;
            vector<cv::Point> maxAreaContour;

            cv::findContours(grayImage, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
            //cv::drawContours(frame, contours, -1, cv::Scalar(0, 0, 255), 2, 8);

            // 提取面积最大轮廓
            double maxArea = 0;
            for (size_t i = 0; i < contours.size(); i++) {
                double area = fabs(cv::contourArea(contours[i]));
                if (area > maxArea) {
                    maxArea = area;
                    maxAreaContour = contours[i];
                }
            }
            // 轮廓外包正矩形
            cv::Rect rect = cv::boundingRect(maxAreaContour);
            cv::rectangle(frame, cv::Point(rect.x, rect.y), cv::Point(rect.x + rect.width, rect.y + rect.height), cv::Scalar(255, 0, 0), 2, 8);

            // 计算成像宽/高
            double width = rect.width * UNIT_PIXEL_W;
            double height = rect.height * UNIT_PIXEL_H;
            // 分别以宽/高为标准计算距离
            double distanceW = w * f / width;
            double distanceH = h * f / height;

局限性


虽然单目测距因其简便性和低成本而在某些场景下非常有用,但它也有其固有的局限性:

尺度模糊性:由于单目图像只能提供二维信息,因此无法直接获得深度信息,导致尺度上的不确定性。
遮挡问题:当目标物体部分被遮挡时,特征点可能无法正确检测或匹配,从而影响测距精度。
光照影响:光照变化会影响图像的质量,进而影响特征点的检测和匹配准确性。
相机运动:如果相机在拍摄过程中移动,那么基于静态相机模型的方法将不再适用。
 

实际应用场景


尽管存在上述局限性,单目测距技术在很多实际应用中仍然表现出强大的潜力:

智能交通系统:用于检测道路上车辆的距离,辅助自动驾驶汽车的安全行驶。
机器人导航:帮助机器人感知周围环境,实现避障和路径规划。
增强现实(AR):用于定位虚拟对象在真实世界中的位置,增强用户体验。
无人机测绘:在无人机航拍过程中,用于地形建模和三维重建。


优化方案


为了克服单目测距的局限性,研究者们提出了多种优化方法:

引入先验知识:利用已知的物体尺寸、形状等信息辅助测距。
多帧融合:通过对连续多帧图像的分析,结合时间序列信息,提高测距的准确性和鲁棒性。
深度学习方法:利用卷积神经网络(CNN)等深度学习模型,学习图像中的深度信息,提升测距精度。
多传感器融合:结合其他传感器(如激光雷达、红外传感器等)的数据,互补单目视觉的不足。

标签:frame,OpenCV,单目,测距,cv,rect,contours
From: https://blog.csdn.net/faker001/article/details/142331354

相关文章

  • OpenCV(cv::bitwise_not())
    目录1.函数定义2.工作原理3.示例cv::bitwise_not()是OpenCV中用于对图像或矩阵进行按位取反操作的函数。它将输入图像的每个像素的值进行按位反转,生成输出图像。按位取反是对每个位进行反转,即将二进制数中的0变为1,1变为0。1.函数定义voidcv::bitwise_not(Inpu......
  • 使用opencv画框,标出坐标
    importcv2importnumpyasnpdrawing,start_x,start_y=False,-1,-1prev_point=None#上一个点history=list()defdraw_box(points,color=(0,255,0),thickness=1):ifpoints:p1,p2=pointstop_left,top_right,bottom_right,b......
  • OpenCV(YCrCb 和 HSV 颜色空间比较)
    目录1.YCrCb颜色空间1.1YCrCb颜色空间的定义1.2YCrCb的转换1.3应用场景2.HSV颜色空间2.1HSV颜色空间的定义2.2HSV的转换2.3应用场景3.YCrCb和HSV颜色空间的比较4.总结在图像处理领域中,除了传统的RGB颜色空间之外,YCrCb和HSV颜色空间被广泛应用于各种图......
  • 香橙派5Pro+虚拟机Ubuntu18.04交叉编译+Opencv4.7
    1.基础工具安装①Ubuntu虚拟机下交叉编译工具链安装香橙派5Pro为Arm64位架构,因此需要安装g++-aarch64-linux-gnu以及gcc-aarch64-linux-gnu(有其它交叉编译器,本文以此编译器为例)更新软件源sudoaptupdatesudoaptupgrate点击查看交叉编译工具链安装apt-cachesearcha......
  • OpenCV(cv::equalizeHist())
    目录1.函数定义2.函数原理3.示例4.应用场景5.注意事项6.实际效果cv::equalizeHist()是OpenCV中用于图像直方图均衡化的函数。该函数主要用于增强图像的对比度,尤其是在图像的光照条件不均匀或整体对比度较低的情况下,直方图均衡化可以有效改善图像的细节。1.函数定......
  • OpenCV(cv::divide())
    目录1.函数定义2.工作原理3.示例3.1矩阵除法3.2矩阵和标量的除法3.3使用缩放因子4.注意事项5.应用场景cv::divide()是OpenCV中用于执行数组或标量的逐元素除法操作的函数。它允许对矩阵进行元素级的除法操作,支持两种使用方式:矩阵与矩阵之间的除法,或矩阵与标量之间的......
  • 变脸大师:基于OpenCV与Dlib的人脸换脸技术实现
    目录简介 重新简介思路解析1.加载人脸检测器和特征点预测模型2.读取两张人脸图片3.获取人脸的特征点4.使用Delaunay三角剖分5.仿射变换三角形6.三角形变形并复制7.脸部轮廓掩模8.无缝克隆换脸9.缩放图像10.显示换脸结果整体代码效果展示准备换脸的......
  • 基于单片机设计的激光测距仪(采用XKC-Kl200模块)
    一、前言随着科技的不断进步和应用需求的增加,测距仪成为了许多领域必备的工具之一。传统的测距仪价格昂贵、体积庞大,使用起来不够方便。本项目采用STC89C52单片机作为主控芯片,结合XKC-KL200激光测距模块和LCD1602显示器,实现了一个简易且高效的激光测距仪。这个测距仪可以帮助用户快......
  • OpenCv(一)
    计算机视觉和机器视觉的区别计算机视觉(ComputerVision)和机器视觉(MachineVision)是两个密切相关但又有区别的领域。两者在应用、技术和目标上都有所不同。**计算机视觉:**主要是研究如何使计算机能够理解和处理图像和视频数据。其目标是从视觉数据中提取有用的信息,实现图像......
  • OpenCV(cv::Sobel())
    目录1.函数定义2.工作原理2.1Sobel核2.2计算过程(1)x方向的Sobel卷积计算(2)y方向的Sobel卷积计算(3)合并x和y方向的梯度2.3示例3.示例4.使用场景总结cv::Sobel()是OpenCV中用于计算图像的梯度(边缘)的常用函数之一。它实现了Sobel滤波器,这是一种常见......