一、需求分析
- 需求:在给定的文本文件中统计输出每一个单词出现的总次数
- SEVENTEEN.txt文本内容如下:
say the name seventeen
hello
we are seventeen
nice to meet you
you
very nice
- 按照MapReduce编程规范,分别编写Mapper,Reducer,Driver
1、Mapper
(1)将MapTask传过来的文本内容先转换成String
(2)根据空格将这一行切分成单词
(3)将单词输出为<单词,1>
2、Reducer
(1)汇总各个key的个数
(2)输出该key的总次数
3、Driver
(1)获取配置信息,获取job对象实例
(2)指定本程序的jar包所在的本地路径
(3)关联Mapper/Reducer业务类
(4)指定Mapper输出数据的kv类型
(5)指定最终输出的数据的kv类型
(6)指定job的输入原始文件所在目录
(7)指定job的输出结果所在目录
(8)提交作业
二、环境准备
1、创建maven工程,MapReduceDemo
2、在pom.xml文件中添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
3、在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
4、创建包名:com.user.mapreduce.wordcount
三、编写程序
1、编写Mapper类
package com.user.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 获取一行
String line = value.toString();
// 2 切割
String[] words = line.split(" ");
// 3 输出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}
2、编写Reducer类
package com.user.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
// 1 累加求和
sum = 0;
for (IntWritable count : values) {
sum += count.get();
}
// 2 输出
v.set(sum);
context.write(key,v);
}
}
3、编写Driver驱动类
package com.user.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 获取配置信息以及获取 job 对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 关联本 Driver 程序的 jar
job.setJarByClass(WordCountDriver.class);
// 3 关联 Mapper 和 Reducer 的 jar
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置 Mapper 输出的 kv 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出 kv 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("C:\\Users\\shi.hongpin\\Desktop\\SEVENTEEN.txt"));
FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output"));
// 7 提交 job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
- 打包成jar包,到虚拟机运行,输入输出路径要修改为:
FileInputFormat.setInputPaths(job, new Path(arg[0]));
FileOutputFormat.setOutputPath(job, new Path(arg[1]));
5、本地运行成功后在对应的输出路径能看到输出结果
are 1
hello 1
meet 1
name 1
nice 2
say 1
seventeen 2
the 1
to 1
very 1
we 1
you 2
四、提交到集群测试
1、用maven打jar包,需要添加的打包插件依赖
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</configuration>
</plugin>
</plugins>
</build>
2、将程序打包成jar包,修改名称为wc.jar,并将其拷贝到Hadoop集群/opt/module/hadoop-3.1.3 路径
3、执行WordCount程序
[user@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.user.mapreduce.wordcount.WordCountDriver /SEVENTEEN.txt /wcoutput5
- 使用JavaApi实现离线文本上传