两个关键问题限制了 RAG 的发展:
- 新型 RAG 算法之间缺乏全面和公平的比较。
- 像 LlamaIndex 和 LangChain 这样的开源工具使用了高级抽象,这导致了透明度的缺失,并限制了开发新算法和评估指标的能力。
RAGLAB: 是一个模块化的开源库。RAGLAB 复现了 6 种先进的算法,并为研究 RAG 算法提供了一个全面的生态系统。利用 RAGLAB,对 10 个基准上的 6 种 RAG 算法进行了公平比较。有了 RAGLAB,研究人员可以高效地比较各种算法的性能并开发新算法。
不同 RAG 库和框架的比较。公平比较指的是在评估过程中对所有基本组件进行对齐,包括随机种子、生成器、检索器和指令。数据收集器指的是能够收集或生成训练和测试数据的能力,无论是通过从现有的原始数据集中抽样,还是通过使用LLM构建标记数据。
RAGLAB提供了一个模块化的架构,允许用户轻松地替换和扩展算法的各个组成部分,包括检索器(retriever)、生成器(generator)和指令(instruction)。
RAGLAB 框架的架构和组件
- 检索器(Retriever): 集成了基于BERT的模型,如Contriever和ColBERT,提供了统一的查询接口和客户端-服务器架构,以及检索缓存机制。
- 语料库(Corpus): 提供预处理的Wikipedia语料库,包括2018年和2023年的版本,以及对应的索引和嵌入。
- 生成器(Generator): 集成了Huggingface Transformers和VLLM,支持量化和低秩适应(LoRA)技术,允许使用大型模型。
- 指令实验室(Instruction Lab): 包含系统指令、任务指令和算法指令,允许用户自定义和组合指令。
- 训练器(Trainer): 集成了Accelerate和DeepSpeed库,支持模型的微调,包括LoRA和量化LoRA技术。
- 数据集和度量(Dataset and Metric): 收集了10个广泛使用的基准数据集,覆盖五种不同的任务类型,并提供了灵活的数据适配机制和多种评估指标
RAGLAB进行了全面的实验,使用不同的基础模型作为生成器,同时保持其他基本组件的一致性,以促进不同高级RAG算法之间的公平比较。
一个使用 RAGLAB 来复现 Self-RAG 算法的脚本
分析了使用不同基础模型的RAG算法(Naive RAG、RRR 、ITER-RETGEN、Self-Ask、Active RAG、Self-RAG)在多个基准上的性能,发现Self-RAG算法在使用特定生成器时显著优于其他算法。
不同算法的指令
Naive RAG
# read process insruction
"### Instruction:\n {task_instrucion} \n## Input:\n\n{query}\n\n Now, based on the following passages
and your knowledge, please answer the question more succinctly and professionally. ### Background
Knowledge:\n {passages} \n\n### Response:\n"
RRR
# rewrite process instruction
"Provide a better search query for Wikipedia to answer the given question, end the query with '**'. \n\n
Question: Ezzard Charles was a world champion in which sport? \n\n Query: Ezzard Charles
champion** \n\n Question: What is the correct name of laughing gas? \n\n Query: laughing gas
name** \n\n Question: {query} \n\n Query: " # read process insruction
"### Instruction:\n {task_instrucion} \n## Input:\n\n{query}\n\n Now, based on the following passages
and your knowledge, please answer the question more succinctly and professionally. ### Background
Knowledge:\n {passages} \n\n### Response:\n"
ITER-RETGEN
# read process insruction
"### Instruction:\n {task_instrucion} \n## Input:\n\n{query}\n\n Now, based on the following passages
and your knowledge, please answer the question more succinctly and professionally. ### Background
Knowledge:\n {passages} \n\n### Response:\n"
Self ASK
# follow up question instruction
"Question: When does monsoon season end in the state the area code 575 is located? Are follow up
questions needed here: Yes. Follow up: Which state is the area code 575 located in? Intermediate
answer: The area code 575 is located in New Mexico. Follow up: When does monsoon season end in
New Mexico? Intermediate answer: Monsoon season in New Mexico typically ends in mid-September. So the final answer is: mid-September. \n{query} Are follow up questions needed here:" # read process insruction
"### Instruction:\n {task_instrucion} \n## Input:\n\n{query}\n\n Now, based on the following passages
and your knowledge, please answer the question more succinctly and professionally. ### Background
Knowledge:\n {passages} \n\n### Response:\n"
Active RAG
# read process insruction
"### Instruction:\n {task_instrucion} \n## Input:\n\n{query}\n\n Now, based on the following passages
and your knowledge, please answer the question more succinctly and professionally. ### Background
Knowledge:\n {passages} \n\n### Response:\n"
RAGLAB 系统用户评估问卷
RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
https://arxiv.org/pdf/2408.11381
https://github.com/fate-ubw/RAGLab
标签:RAG,passages,模块化,算法,开源,query,RAGLAB,### From: https://blog.51cto.com/u_16163510/12046925