首页 > 其他分享 >这10种分布式ID,太绝了!

这10种分布式ID,太绝了!

时间:2024-09-18 10:04:04浏览次数:13  
标签:10 太绝 数据库 生成 号段 id ID 分布式

前言

分布式ID,在我们日常的开发中,其实使用的挺多的。

有很多业务场景在用,比如:

  1. 分布式链路系统的trace_id
  2. 单表中的主键
  3. Redis中分布式锁的key
  4. 分库分表后表的id

今天跟大家一起聊聊分布式ID的一些常见方案,希望对你会有所帮助。

1 UUID

UUID (Universally Unique IDentifier) 通用唯一识别码 ,也称为 GUID (Globally Unique IDentifier) 全球唯一标识符。

UUID是一个长度为128位的标志符,能够在时间和空间上确保其唯一性。

UUID最初应用于Apollo网络计算系统,随后在Open Software Foundation(OSF)的分布式计算环境(DCE)中得到应用。

可让分布式系统可以不借助中心节点,就可以生成唯一标识, 比如唯一的ID进行日志记录。

UUID是基于时间戳、MAC地址、随机数等多种因素生成,理论上全球范围内几乎不可能重复。

在Java中可以通过UUID的randomUUID方法获取唯一字符串:

import java.util.UUID;

/**
 * @author 苏三
 * @date 2024/9/13 上午10:38
 */
public class UuidTest {
    public static void main(String[] args) {
        String uuid = UUID.randomUUID().toString();
        System.out.println(uuid);
    }
}

运行结果:

22527933-d0a7-4c2b-a377-aeb438a31b02

优点:UUID不借助中心节点,可以保持程序的独立性,可以保证程序在不同的数据库之间,做数据迁移,都不受影响。

缺点:UUID生成的字符串太长,通过索引查询数据的效率比较低。此外,UUID生成的字符串,顺序没有保证,不是递增的,不满足工作中的有些业务场景。

在分布式日志系统或者分布式链路跟踪系统中,可以使用UUID生成唯一标识,用于串联请求的日志。

2 数据库自增ID

在很多数据库中自增的主键ID,数据库本身是能够保证唯一的。

MySQL中的auto_increment。

Oracle中sequence。

我们在业务代码中,不需要做任何处理,这个ID的值,是由数据库自动生成的,并且它会保证数据的唯一性。

优点:非常简单,数据查询效率非常高。

缺点:只能保证单表的数据唯一性,如果跨表或者跨数据库,ID可能会重复。ID是自增的,生成规则很容易被猜透,有安全风险。ID是基于数据库生成的,在高并发下,可能会有性能问题。

在一些老系统或者公司的内部管理系统中,可能会用数据库递增ID作为分布式ID的方案,这些系统的用户并发量一般比较小,数据量也不多。

3 数据库号段模式

在高并发的系统中,频繁访问数据库,会影响系统的性能。

可以对数据库自增ID方案做一个优化。

一次生成一定步长的ID,比如:步长是1000,每次数据库自增1000,ID值从100001变成了101001。


将100002~101001这个号段的1000个ID,缓存到服务器的内存从。

当有获取分布式ID的请求过来时,先从服务器的内存中获取数据,如果能够获取到,则直接返回。

如果没有获取到,则说明缓存的号段的数据已经被获取完了。

这时需要重新从数据库中获取一次新号段的ID,缓存到服务器的内存中,这样下次又能直接从内存中获取ID了。

优点:实现简单,对数据库的依赖减弱了,可以提升系统的性能。

缺点:ID是自增的,生成规则很容易被猜透,有安全风险。如果数据库是单节点的,有岩机的风险。

4 数据库的多主模式

为了解决上面单节点岩机问题,我们可以使用数据库的多主模式。

即有多个master数据库实例。

在生成ID的时候,一个请求只能写入一个master实例。

为了保证在不同的master实例下ID的唯一性,我们需要事先规定好每个master下的大的区间,比如:master1的数据是10开头的,master2的数据是11开头的,master3的数据是12开头的。

然后每个master,还是按照数据库号段模式来处理。

优点:避免了数据库号段模式的单节点岩机风险,提升了系统的稳定性,由于结合使用了号段模式,系统性能也是OK的。

缺点:跨多个master实例下生成的ID,可能不是递增的。

5 Redis生成ID

除了使用数据库之外,Redis其实也能产生自增ID。

我们可以使用Redis中的incr命令:

redis> SET ID_VALUE 1000
OK

redis> INCR ID_VALUE
(integer) 1001

redis> GET ID_VALUE 
"1001"

给ID_VALUE设置了值是1000,然后使用INCR命令,可以每次都加1。

这个方案跟我们之前讨论过的方案1(数据库自增ID)的方案类似。

优点:方案简单,性能比方案1更好,避免了跨表或者跨数据库,ID重复的问题。

缺点:ID是自增的,生成规则很容易被猜透,有安全风险。并且Redis可能也存在单节点,岩机的风险。

6 Zookeeper生成ID

Zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。

由于需要高度依赖Zookeeper,并且是同步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。

因此,性能在高并发的分布式环境下,也不太理想。

很少人会使用Zookeeper来生成唯一ID。

7 雪花算法

Snowflake(雪花算法)是Twitter开源的分布式ID算法。

核心思想:使用一个 64 bit 的 long 型的数字作为全局唯一 id。

最高位是符号位,始终为0,不可用。

41位的时间序列,精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。

10位的机器标识,10位的长度最多支持部署1024个节点

12位的计数序列号,序列号即一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号。

优点:算法简单,在内存中进行,效率高。高并发分布式环境下生成不重复ID,每秒可生成百万个不重复ID。
基于时间戳,以及同一时间戳下序列号自增,基本保证ID有序递增。并且不依赖第三方库或者中间件,稳定性更好。

缺点:依赖服务器时间,服务器时钟回拨时可能会生成重复ID。

8 Leaf

Leaf是美团开源的分布式ID生成系统,它提供了两种生成ID的方式:

  • Leaf-segment号段模式
  • Leaf-snowflake雪花算法

Leaf-segment号段模式,需要创建一张表:

这个模式就是我们在第3节讲过的数据库号段模式。

biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。

原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。

Leaf-snowflake雪花算法,是在传统雪花算法之上,加上Zookeeper,做了一点改造:

Leaf-snowflake服务需要从Zookeeper按顺序的获取workId,会缓存到本地。

如果Zookeeper出现异常,Leaf-snowflake服务会直接获取本地的workId,它相当于对Zookeeper是弱依赖的。

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,它内部有一套机制解决机器时钟回拨的问题:

如果你想知道美团Leaf的更多细节,可以看看Github地址:https://github.com/Meituan-Dianping/Leaf

最近整理了一份10万字的面试宝典,可以免费送给大家,获取方式加我微信:su_san_java,备注:面试。

9 Tinyid

Tinyid是滴滴用Java开发的一款分布式id生成系统,基于数据库号段算法实现。

Tinyid是在美团的ID生成算法Leaf的基础上扩展而来,支持数据库多主节点模式,它提供了REST API和JavaClient两种获取方式,相对来说使用更方便。

但跟美团Leaf不同的是,Tinyid只支持号段一种模式,并不支持Snowflake模式。

基于数据库号段模式的简单架构方案:

ID生成系统向外提供http服务,请求经过负载均衡router,能够路由到其中一台tinyid-server,这样就能从事先加载好的号段中获取一个ID了。

如果号段还没有加载,或者已经用完了,则需要向db再申请一个新的可用号段,多台server之间因为号段生成算法的原子性,而保证每台server上的可用号段不重,从而使id生成不重。

但也带来了这些问题:

  • 当id用完时需要访问db加载新的号段,db更新也可能存在version冲突,此时id生成耗时明显增加。
  • db是一个单点,虽然db可以建设主从等高可用架构,但始终是一个单点。
  • 使用http方式获取一个id,存在网络开销,性能和可用性都不太好。

为了解决这些这些问题:增加了tinyid-client本地生成ID、使用双号段缓存、增加多 db 支持提高服务的稳定性。

最终的架构方案如下:

Tinyid方案主要做了下面这些优化:

  • 增加tinyid-client:tinyid-client向tinyid-server发送请求来获取可用号段,之后在本地构建双号段、id生成,如此id生成则变成纯本地操作,性能大大提升。
  • 使用双号段缓存:为了避免在获取新号段的情况下,程序获取唯一ID的速度比较慢。Tinyid中的号段在用到一定程度的时候,就会去异步加载下一个号段,保证内存中始终有可用号段。
  • 增加多db支持:每个DB都能生成唯一ID,提高了可用性。

如果你想知道滴滴Tinyid的更多细节,可以看看Github地址:https://github.com/didi/tinyid

10 UidGenerator

百度 UID-Generator 使用 Java 语言,基于雪花算法实现。

UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。

在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制。

采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。

Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。默认采用上图字节分配方式:

  • sign(1bit):固定1bit符号标识,即生成的UID为正数。
  • delta seconds (28 bits) :当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年
  • worker id (22 bits):机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。
  • sequence (13 bits):每秒下的并发序列,13 bits可支持每秒8192个并发。

sequence决定了UidGenerator的并发能力,13 bits的 sequence 可支持 8192/s 的并发,但现实中很有可能不够用,从而诞生了 CachedUidGenerator。

CachedUidGenerator 使用 RingBuffer 缓存生成的id。RingBuffer是个环形数组,默认大小为 8192 个(可以通过boostPower参数设置大小)。

RingBuffer环形数组,数组每个元素成为一个 slot。

Tail 指针、Cursor 指针用于环形数组上读写 slot:

  • Tail指针:表示 Producer 生产的最大序号(此序号从 0 开始,持续递增)。Tail 不能超过 Cursor,即生产者不能覆盖未消费的 slot。当 Tail 已赶上 curosr,此时可通过 rejectedPutBufferHandler 指定 PutRejectPolicy。
  • Cursor指针:表示 Consumer 消费到的最小序号(序号序列与 Producer 序列相同)。Cursor 不能超过 Tail,即不能消费未生产的 slot。当 Cursor 已赶上 tail,此时可通过 rejectedTakeBufferHandler 指定 TakeRejectPolicy。

RingBuffer填充触发机制:

  • 程序启动时,将RingBuffer填充满。
  • 在调用getUID()方法获取id时,如果检测到RingBuffer中的剩余id个数小于总个数的50%,将RingBuffer填充满。
  • 定时填充(可配置是否使用以及定时任务的周期)。

如果你想知道百度uid-generator的更多细节,可以看看Github地址:https://github.com/baidu/uid-generator

最后说一句(求关注,别白嫖我)

如果这篇文章对您有所帮助,或者有所启发的话,帮忙扫描下发二维码关注一下,您的支持是我坚持写作最大的动力。

求一键三连:点赞、转发、在看。
关注公众号:【苏三说技术】,在公众号中回复:面试、代码神器、开发手册、时间管理有超赞的粉丝福利,另外回复:加群,可以跟很多BAT大厂的前辈交流和学习。

标签:10,太绝,数据库,生成,号段,id,ID,分布式
From: https://www.cnblogs.com/12lisu/p/18417984

相关文章

  • P1073 [NOIP2009 提高组] 最优贸易
    大佬题解感觉分层图的做法太nb了吧,每次向下连边更新权值,我确实没什么补充的了,还是看大佬的吧。#include<bits/stdc++.h>usingnamespacestd;#definelllonglongconstintN=1e7+10;intn,m;intval[N];intcnt;inthead[N];structss{ intto,w,next;}a[N];voi......
  • LP-MSPMOC1104设备设置指南
    I.引言A.介绍LP-MSPMOC1104设备1.设备概述:LP-MSPMOC1104是一款集成了多种接口和功能的高级微型控制器,适用于各种硬件交互应用。2.主要特点:该设备配备了24MHzArmCortex处理器、16KBFlash存储、4KBRAM、12-bit1.5MSPSADC、UART、I2C和SPI接口。B.设置界面概览1.界......
  • Android14音频进阶之如何集成音效(八十五)
    简介:CSDN博客专家、《Android系统多媒体进阶实战》一书作者新书发布:《Android系统多媒体进阶实战》......
  • (论文解读)Visual-Language Prompt Tuning with Knowledge-guided Context Optimization
    Comment:acceptedbyCVPR2023基于知识引导上下文优化的视觉语言提示学习摘要提示调优是利用任务相关的可学习标记将预训练的视觉语言模型(VLM)适应下游任务的有效方法。基于CoOp的代表性的工作将可学习的文本token与类别token相结合,来获得特定的文本知识。然而,这些特定的文......
  • 透明质酸Hyaluronic Acid-CY5药物研发与筛选【新维创分享】
    透明质酸HyaluronicAcid-CY5药物研发与筛选【新维创分享】HyaluronicAcid-CY5应用领域药物传递系统:CY5-HA可以被设计为药物传递系统的一部分。透明质酸作为载体,可以利用其与细胞表面受体的结合能力(如CD44受体),将药物靶向传递到特定组织或细胞。而Cy5的荧光标记则可用于监测......
  • 透明质酸Hyaluronic Acid-CY5药物研发与筛选【新维创分享】
    透明质酸HyaluronicAcid-CY5药物研发与筛选【新维创分享】HyaluronicAcid-CY5应用领域药物传递系统:CY5-HA可以被设计为药物传递系统的一部分。透明质酸作为载体,可以利用其与细胞表面受体的结合能力(如CD44受体),将药物靶向传递到特定组织或细胞。而Cy5的荧光标记则可用于监测......
  • HA-FITC透明质酸荧光标记Hyaluronic Acid-FITC【新维创荧光标记】
    HA-FITC透明质酸荧光标记HyaluronicAcid-FITC【新维创荧光标记】组织工程:在组织工程领域,透明质酸常被用作构建生物支架的材料,FITC-HA可用于改善生物材料的生物相容性,并提供荧光示踪功能。同时,还可以观察支架在生物体内的位置、降解和细胞定植情况,为组织工程的研究提供有力支......
  • 第七章习题14-输入10个学生5门课的成绩,分别用函数实现下列功能:①计算每个学生的平均分
     ......
  • 【CSS in Depth 2 精译_032】5.4 Grid 网格布局的显示网格与隐式网格(上)
    当前内容所在位置(可进入专栏查看其他译好的章节内容)第一章层叠、优先级与继承(已完结)1.1层叠1.2继承1.3特殊值1.4简写属性1.5CSS渐进式增强技术1.6本章小结第二章相对单位(已完结)2.1相对单位的威力2.2em与rem2.3告别像素思维2.4视口的相对单位2.5......
  • Android插件化(一)技术调研
    Android插件化(一)技术调研前言有关APK更新的技术比较多,例如:增量更新、插件式开发、热修复、RN、静默安装。下面简单介绍一下:更新方式签名增量更新旧版本Apk(v1.0)和新(v2.0)、旧版本Apk(v1.0)生成的差分包(apk.patch质量小)合并成为新版本Apk(v2.0)安装。插件式开发给宿主APK提......