理论
1.SPI外设简介
STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担
可配置8位/16位数据帧、高位先行/低位先行
时钟频率: fPCLK / (2, 4, 8, 16, 32, 64, 128, 256)
支持多主机模型、主或从操作 可精简为半双工/单工通信
支持DMA
兼容I2S协议
STM32F103C8T6 硬件SPI资源:SPI1、SPI2
2.SPI框图
全双工模式:必须只有在发送数据时,才会触发接受数据,因为在这种模式下只能是发送数据时才会触发时钟线(单纯接受不会触发时钟线),实现全双工模式,发送,接收同时进行
同时可以通过标志位TXE与RXEN判断运行状态
3.SPI基本结构
没有NSS线,它可以通过软件进行控制
4.主模式传输
(1)主模式全双工连续传输
这个工作模式了解即可,实际上常用非连续传输
(2)非连续传输
(1)判断TXE标志位
判断是否没有数据,如果发送缓存器(发送数据寄存器TDR)没有数据,则置为SET(1)
(2)发送数据
调用SPI_I2S_SendData发送数据
(3)检测RXNE标志位
因为在TXE重新变回SET(1)后,硬件还在发送数据,无法判断是否发送完一个字节,则需要RXNE进行判断,在移位寄存器移完时,会发送字节到接受缓存区RXNE置SET(1)来进行判断
5. GPIO输出与复用输出
在STM32微控制器中,为了使GPIO口能够由硬件外设(如定时器、USART、SPI、I2C等)控制,GPIO口通常需要配置为复用推挽输出模式。以下是这样做的原因:
1. 硬件外设控制的需求
硬件外设(如定时器或串口)通常需要将GPIO引脚用于特定的功能,比如生成PWM信号、传输数据或产生时钟信号。为了实现这些功能,GPIO引脚必须支持复用功能和特定的输出模式。这是因为:
-
复用功能:STM32的GPIO引脚通常具有复用功能,允许它们被配置为多种不同的外设功能。要让一个引脚工作在某个硬件外设的模式下,必须将其配置为该外设所需的特定复用功能模式。推挽输出模式是很多外设的要求,因为它能提供稳定的电平和较强的驱动能力。
-
推挽输出模式:推挽输出模式在数字电路中是一种常见的输出配置,它能够通过两个晶体管(NPN和PNP)来驱动引脚提供强大的电流。对于需要稳定的高电平和低电平的外设信号(如PWM输出或高速通信),推挽输出模式可以提供较强的驱动能力和较快的响应速度。
2. 稳定性和驱动能力
-
稳定性:推挽输出模式能够提供稳定的高电平和低电平,减少信号的抖动和不稳定性。这对于外设的正常运行至关重要,尤其是当需要精确的时间控制和稳定的信号传输时。
-
驱动能力:推挽输出模式具有较强的电流驱动能力,适合驱动外设的输入。外设(如LED、继电器、外部模块等)通常需要较强的驱动能力来确保信号的可靠传输。
3. 引脚复用和外设配置
STM32微控制器的引脚可以配置为多种功能,通过复用配置选择具体的外设功能。在这种配置下,引脚可能需要具备推挽输出模式来实现以下目的:
- 灵活性:允许同一引脚在不同的功能模式下工作,提高了引脚的利用效率和设计灵活性。
- 简化设计:通过复用功能,可以减少外部电路的复杂性和数量,实现更紧凑的设计。
4. 示例
例如,STM32的定时器(TIM)可以配置为产生PWM信号,这时相应的GPIO引脚需要配置为推挽输出模式,以确保PWM信号的稳定性和准确性。同样,USART(串行通信)外设也需要将GPIO引脚配置为推挽输出模式,以保证数据传输的稳定和高效。
总结
为了使STM32的GPIO口能够由硬件外设控制,并且满足外设对信号稳定性和驱动能力的需求,需要将GPIO口配置为复用推挽输出模式。这种配置不仅满足了外设的功能要求,还提供了引脚的多功能复用能力,使得系统设计更为灵活和高效。
代码
硬件SPI读写W25Q64
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"
uint8_t MID; //定义用于存放MID号的变量
uint16_t DID; //定义用于存放DID号的变量
uint8_t ArrayWrite[] = {0x01, 0x02, 0x03, 0x04}; //定义要写入数据的测试数组
uint8_t ArrayRead[4]; //定义要读取数据的测试数组
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
W25Q64_Init(); //W25Q64初始化
/*显示静态字符串*/
OLED_ShowString(1, 1, "MID: DID:");
OLED_ShowString(2, 1, "W:");
OLED_ShowString(3, 1, "R:");
/*显示ID号*/
W25Q64_ReadID(&MID, &DID); //获取W25Q64的ID号
OLED_ShowHexNum(1, 5, MID, 2); //显示MID
OLED_ShowHexNum(1, 12, DID, 4); //显示DID
/*W25Q64功能函数测试*/
W25Q64_SectorErase(0x000000); //扇区擦除
W25Q64_PageProgram(0x000000, ArrayWrite, 4); //将写入数据的测试数组写入到W25Q64中
W25Q64_ReadData(0x000000, ArrayRead, 4); //读取刚写入的测试数据到读取数据的测试数组中
/*显示数据*/
OLED_ShowHexNum(2, 3, ArrayWrite[0], 2); //显示写入数据的测试数组
OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);
OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);
OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);
OLED_ShowHexNum(3, 3, ArrayRead[0], 2); //显示读取数据的测试数组
OLED_ShowHexNum(3, 6, ArrayRead[1], 2);
OLED_ShowHexNum(3, 9, ArrayRead[2], 2);
OLED_ShowHexNum(3, 12, ArrayRead[3], 2);
while (1)
{
}
}
MySPI.h
#ifndef __MYSPI_H
#define __MYSPI_H
void MySPI_Init(void);
void MySPI_Start(void);
void MySPI_Stop(void);
uint8_t MySPI_SwapByte(uint8_t ByteSend);
#endif
MySPI.c
#include "stm32f10x.h" // Device header
/**
* 函 数:SPI写SS引脚电平,SS仍由软件模拟
* 参 数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1
* 返 回 值:无
* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平
*/
void MySPI_W_SS(uint8_t BitValue)
{
GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue); //根据BitValue,设置SS引脚的电平
}
/**
* 函 数:SPI初始化
* 参 数:无
* 返 回 值:无
*/
void MySPI_Init(void)
{
/*开启时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); //开启SPI1的时钟
/*GPIO初始化*/
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA4引脚初始化为推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA5和PA7引脚初始化为复用推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA6引脚初始化为上拉输入
/*SPI初始化*/
SPI_InitTypeDef SPI_InitStructure; //定义结构体变量
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //模式,选择为SPI主模式
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //方向,选择2线全双工
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //数据宽度,选择为8位
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //先行位,选择高位先行
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128; //波特率分频,选择128分频
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; //SPI极性,选择低极性
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; //SPI相位,选择第一个时钟边沿采样,极性和相位决定选择SPI模式0
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS,选择由软件控制
SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC多项式,暂时用不到,给默认值7
SPI_Init(SPI1, &SPI_InitStructure); //将结构体变量交给SPI_Init,配置SPI1
/*SPI使能*/
SPI_Cmd(SPI1, ENABLE); //使能SPI1,开始运行
/*设置默认电平*/
MySPI_W_SS(1); //SS默认高电平
}
/**
* 函 数:SPI起始
* 参 数:无
* 返 回 值:无
*/
void MySPI_Start(void)
{
MySPI_W_SS(0); //拉低SS,开始时序
}
/**
* 函 数:SPI终止
* 参 数:无
* 返 回 值:无
*/
void MySPI_Stop(void)
{
MySPI_W_SS(1); //拉高SS,终止时序
}
/**
* 函 数:SPI交换传输一个字节,使用SPI模式0
* 参 数:ByteSend 要发送的一个字节
* 返 回 值:接收的一个字节
*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET); //等待发送数据寄存器空
SPI_I2S_SendData(SPI1, ByteSend); //写入数据到发送数据寄存器,开始产生时序
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET); //等待接收数据寄存器非空
return SPI_I2S_ReceiveData(SPI1); //读取接收到的数据并返回
}
W25Q64.c
#include "stm32f10x.h" // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"
/**
* 函 数:W25Q64初始化
* 参 数:无
* 返 回 值:无
*/
void W25Q64_Init(void)
{
MySPI_Init(); //先初始化底层的SPI
}
/**
* 函 数:MPU6050读取ID号
* 参 数:MID 工厂ID,使用输出参数的形式返回
* 参 数:DID 设备ID,使用输出参数的形式返回
* 返 回 值:无
*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_JEDEC_ID); //交换发送读取ID的指令
*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //交换接收MID,通过输出参数返回
*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //交换接收DID高8位
*DID <<= 8; //高8位移到高位
*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE); //或上交换接收DID的低8位,通过输出参数返回
MySPI_Stop(); //SPI终止
}
/**
* 函 数:W25Q64写使能
* 参 数:无
* 返 回 值:无
*/
void W25Q64_WriteEnable(void)
{
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_WRITE_ENABLE); //交换发送写使能的指令
MySPI_Stop(); //SPI终止
}
/**
* 函 数:W25Q64等待忙
* 参 数:无
* 返 回 值:无
*/
void W25Q64_WaitBusy(void)
{
uint32_t Timeout;
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1); //交换发送读状态寄存器1的指令
Timeout = 100000; //给定超时计数时间
while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01) //循环等待忙标志位
{
Timeout --; //等待时,计数值自减
if (Timeout == 0) //自减到0后,等待超时
{
/*超时的错误处理代码,可以添加到此处*/
break; //跳出等待,不等了
}
}
MySPI_Stop(); //SPI终止
}
/**
* 函 数:W25Q64页编程
* 参 数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF
* 参 数:DataArray 用于写入数据的数组
* 参 数:Count 要写入数据的数量,范围:0~256
* 返 回 值:无
* 注意事项:写入的地址范围不能跨页
*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{
uint16_t i;
W25Q64_WriteEnable(); //写使能
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_PAGE_PROGRAM); //交换发送页编程的指令
MySPI_SwapByte(Address >> 16); //交换发送地址23~16位
MySPI_SwapByte(Address >> 8); //交换发送地址15~8位
MySPI_SwapByte(Address); //交换发送地址7~0位
for (i = 0; i < Count; i ++) //循环Count次
{
MySPI_SwapByte(DataArray[i]); //依次在起始地址后写入数据
}
MySPI_Stop(); //SPI终止
W25Q64_WaitBusy(); //等待忙
}
/**
* 函 数:W25Q64扇区擦除(4KB)
* 参 数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF
* 返 回 值:无
*/
void W25Q64_SectorErase(uint32_t Address)
{
W25Q64_WriteEnable(); //写使能
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB); //交换发送扇区擦除的指令
MySPI_SwapByte(Address >> 16); //交换发送地址23~16位
MySPI_SwapByte(Address >> 8); //交换发送地址15~8位
MySPI_SwapByte(Address); //交换发送地址7~0位
MySPI_Stop(); //SPI终止
W25Q64_WaitBusy(); //等待忙
}
/**
* 函 数:W25Q64读取数据
* 参 数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF
* 参 数:DataArray 用于接收读取数据的数组,通过输出参数返回
* 参 数:Count 要读取数据的数量,范围:0~0x800000
* 返 回 值:无
*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{
uint32_t i;
MySPI_Start(); //SPI起始
MySPI_SwapByte(W25Q64_READ_DATA); //交换发送读取数据的指令
MySPI_SwapByte(Address >> 16); //交换发送地址23~16位
MySPI_SwapByte(Address >> 8); //交换发送地址15~8位
MySPI_SwapByte(Address); //交换发送地址7~0位
for (i = 0; i < Count; i ++) //循环Count次
{
DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //依次在起始地址后读取数据
}
MySPI_Stop(); //SPI终止
}
W25Q64.h
#ifndef __W25Q64_H
#define __W25Q64_H
void W25Q64_Init(void);
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID);
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count);
#endif