首页 > 其他分享 >VOC-YOLO数据集转换,一条龙服务,包含数据增强

VOC-YOLO数据集转换,一条龙服务,包含数据增强

时间:2024-09-13 08:51:58浏览次数:18  
标签:random img VOC image YOLO boxes path 一条龙 size

VOC-YOLO数据集转换,一条龙服务,包含数据增强

文章目录


前言

VOC-YOLO数据集转换
有步骤好上手,跟随脚步修改路径即可


一、VOC转YOLO

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

# 根据自己情况修改
classes = []


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    if not os.path.exists(r'\mx_light\ann/%s.xml' % (image_id)):
        return

    in_file = open(r'\mx_light\ann/%s.xml' % (image_id))

    out_file = open(r'\mx_light\labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


for image in os.listdir(r'\mx_light\img'):
    image_id = image.split('.')[0]
    convert_annotation(image_id)

二、YOLO数据增强

1.需要什么增强就保留,不需要就注释

代码如下:

# -*- coding: utf-8 -*-
"""
Created on 2023-04-01 9:08

@author: Fan yi ming

Func: 对于目标检测的数据增强[YOLO](特点是数据增强后标签也要更改)
review:常用的数据增强方式;
        1.翻转:左右和上下翻转,随机翻转
        2.随机裁剪,图像缩放
        3.改变色调
        4.添加噪声

注意: boxes的标签和坐标一个是int,一个是float,存放的时候要注意处理方式。

参考:https://github.com/REN-HT/Data-Augmentation/blob/main/data_augmentation.py
"""
import torch
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from torchvision import transforms
import numpy as np
import matplotlib.pyplot as plt
import os
import random
random.seed(0)


class DataAugmentationOnDetection:
    def __init__(self):
        super(DataAugmentationOnDetection, self).__init__()

    # 以下的几个参数类型中,image的类型全部如下类型
    # 参数类型: image:Image.open(path)
    def resize_keep_ratio(self, image, boxes, target_size):
        """
            参数类型: image:Image.open(path), boxes:Tensor, target_size:int
            功能:将图像缩放到size尺寸,调整相应的boxes,同时保持长宽比(最长的边是target size
        """
        old_size = image.size[0:2]  # 原始图像大小
        # 取最小的缩放比例
        ratio = min(float(target_size) / (old_size[i]) for i in range(len(old_size)))  # 计算原始图像宽高与目标图像大小的比例,并取其中的较小值
        new_size = tuple([int(i * ratio) for i in old_size])  # 根据上边求得的比例计算在保持比例前提下得到的图像大小
        # boxes 不用变化,因为是等比例变化
        return image.resize(new_size, Image.BILINEAR), boxes

    def resizeDown_keep_ratio(self, image, boxes, target_size):
        """ 与上面的函数功能类似,但它只降低图片的尺寸,不会扩大图片尺寸"""
        old_size = image.size[0:2]  # 原始图像大小
        # 取最小的缩放比例
        ratio = min(float(target_size) / (old_size[i]) for i in range(len(old_size)))  # 计算原始图像宽高与目标图像大小的比例,并取其中的较小值
        ratio = min(ratio, 1)
        new_size = tuple([int(i * ratio) for i in old_size])  # 根据上边求得的比例计算在保持比例前提下得到的图像大小

        # boxes 不用变化,因为是等比例变化
        return image.resize(new_size, Image.BILINEAR), boxes

    def resize(self, img, boxes, size):
        # ---------------------------------------------------------
        # 类型为 img=Image.open(path),boxes:Tensor,size:int
        # 功能为:将图像长和宽缩放到指定值size,并且相应调整boxes
        # ---------------------------------------------------------
        return img.resize((size, size), Image.BILINEAR), boxes

    def random_flip_horizon(self, img, boxes, h_rate=1):
        # -------------------------------------
        # 随机水平翻转
        # -------------------------------------
        if np.random.random() < h_rate:
            transform = transforms.RandomHorizontalFlip(p=1)
            img = transform(img)
            if len(boxes) > 0:
                x = 1 - boxes[:, 1]
                boxes[:, 1] = x
        return img, boxes

    def random_flip_vertical(self, img, boxes, v_rate=1):
        # 随机垂直翻转
        if np.random.random() < v_rate:
            transform = transforms.RandomVerticalFlip(p=1)
            img = transform(img)
            if len(boxes) > 0:
                y = 1 - boxes[:, 2]
                boxes[:, 2] = y
        return img, boxes

    def center_crop(self, img, boxes, target_size=None):
        # -------------------------------------
        # 中心裁剪 ,裁剪成 (size, size) 的正方形, 仅限图形,w,h
        # 这里用比例是很难算的,转成x1,y1, x2, y2格式来计算
        # -------------------------------------
        w, h = img.size
        size = min(w, h)
        if len(boxes) > 0:
            # 转换到xyxy格式
            label = boxes[:, 0].reshape([-1, 1])
            x_, y_, w_, h_ = boxes[:, 1], boxes[:, 2], boxes[:, 3], boxes[:, 4]
            x1 = (w * x_ - 0.5 * w * w_).reshape([-1, 1])
            y1 = (h * y_ - 0.5 * h * h_).reshape([-1, 1])
            x2 = (w * x_ + 0.5 * w * w_).reshape([-1, 1])
            y2 = (h * y_ + 0.5 * h * h_).reshape([-1, 1])
            boxes_xyxy = torch.cat([x1, y1, x2, y2], dim=1)
            # 边框转换
            if w > h:
                boxes_xyxy[:, [0, 2]] = boxes_xyxy[:, [0, 2]] - (w - h) / 2
            else:
                boxes_xyxy[:, [1, 3]] = boxes_xyxy[:, [1, 3]] - (h - w) / 2
            in_boundary = [i for i in range(boxes_xyxy.shape[0])]
            for i in range(boxes_xyxy.shape[0]):
                # 判断x是否超出界限
                if (boxes_xyxy[i, 0] < 0 and boxes_xyxy[i, 2] < 0) or (boxes_xyxy[i, 0] > size and boxes_xyxy[i, 2] > size):
                    in_boundary.remove(i)
                # 判断y是否超出界限
                elif (boxes_xyxy[i, 1] < 0 and boxes_xyxy[i, 3] < 0) or (boxes_xyxy[i, 1] > size and boxes_xyxy[i, 3] > size):
                    in_boundary.append(i)
            boxes_xyxy = boxes_xyxy[in_boundary]
            boxes = boxes_xyxy.clamp(min=0, max=size).reshape([-1, 4])  # 压缩到固定范围
            label = label[in_boundary]
            # 转换到YOLO格式
            x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
            xc = ((x1 + x2) / (2 * size)).reshape([-1, 1])
            yc = ((y1 + y2) / (2 * size)).reshape([-1, 1])
            wc = ((x2 - x1) / size).reshape([-1, 1])
            hc = ((y2 - y1) / size).reshape([-1, 1])
            boxes = torch.cat([xc, yc, wc, hc], dim=1)
        # 图像转换
        transform = transforms.CenterCrop(size)
        img = transform(img)
        if target_size:
            img = img.resize((target_size, target_size), Image.BILINEAR)
        if len(boxes) > 0:
            return img, torch.cat([label.reshape([-1, 1]), boxes], dim=1)
        else:
            return img, boxes

    # ------------------------------------------------------
    # 以下img皆为Tensor类型
    # ------------------------------------------------------

    def random_bright(self, img, u=120, p=1):
        # -------------------------------------
        # 随机亮度变换
        # -------------------------------------
        if np.random.random() < p:
            alpha=np.random.uniform(-u, u)/255
            img += alpha
            img=img.clamp(min=0.0, max=1.0)
        return img

    def random_contrast(self, img, lower=0.5, upper=1.5, p=1):
        # -------------------------------------
        # 随机增强对比度
        # -------------------------------------
        if np.random.random() < p:
            alpha=np.random.uniform(lower, upper)
            img*=alpha
            img=img.clamp(min=0, max=1.0)
        return img

    def random_saturation(self, img,lower=0.5, upper=1.5, p=1):
        # 随机饱和度变换,针对彩色三通道图像,中间通道乘以一个值
        if np.random.random() < p:
            alpha=np.random.uniform(lower, upper)
            img[1]=img[1]*alpha
            img[1]=img[1].clamp(min=0,max=1.0)
        return img

    def add_gasuss_noise(self, img, mean=0, std=0.1):
        noise=torch.normal(mean,std,img.shape)
        img+=noise
        img=img.clamp(min=0, max=1.0)
        return img

    def add_salt_noise(self, img):
        noise=torch.rand(img.shape)
        alpha=np.random.random()/5 + 0.7
        img[noise[:,:,:]>alpha]=1.0
        return img

    def add_pepper_noise(self, img):
        noise=torch.rand(img.shape)
        alpha=np.random.random()/5 + 0.7
        img[noise[:, :, :]>alpha]=0
        return img


def plot_pics(img, boxes):
    # 显示图像和候选框,img是Image.Open()类型, boxes是Tensor类型
    plt.imshow(img)
    label_colors = [(213, 110, 89)]
    w, h = img.size
    for i in range(boxes.shape[0]):
        box = boxes[i, 1:]
        xc, yc, wc, hc = box
        x = w * xc - 0.5 * w * wc
        y = h * yc - 0.5 * h * hc
        box_w, box_h = w * wc, h * hc
        plt.gca().add_patch(plt.Rectangle(xy=(x, y), width=box_w, height=box_h,
                                          edgecolor=[c / 255 for c in label_colors[0]],
                                          fill=False, linewidth=2))
    plt.show()

def get_image_list(image_path):
    # 根据图片文件,查找所有图片并返回列表
    files_list = []
    for root, sub_dirs, files in os.walk(image_path):
        for special_file in files:
            special_file = special_file[0: len(special_file)]
            files_list.append(special_file)
    return files_list

def get_label_file(label_path, image_name):
    # 根据图片信息,查找对应的label
    fname = os.path.join(label_path, image_name[0: len(image_name)-4]+".txt")
    data2 = []
    if not os.path.exists(fname):
        return data2
    if os.path.getsize(fname) == 0:
        return data2
    else:
        with open(fname, 'r', encoding='utf-8') as infile:
            # 读取并转换标签
            for line in infile:
                data_line = line.strip("\n").split()
                data2.append([float(i) for i in data_line])
    return data2


def save_Yolo(img, boxes, save_path, prefix, image_name):
    # img: 需要时Image类型的数据, prefix 前缀
    # 将结果保存到save path指示的路径中
    if not os.path.exists(save_path) or \
            not os.path.exists(os.path.join(save_path, "images")):
        os.makedirs(os.path.join(save_path, "images"))
        os.makedirs(os.path.join(save_path, "labels"))
    try:
        img.save(os.path.join(save_path, "images", prefix + image_name))
        with open(os.path.join(save_path, "labels", prefix + image_name[0:len(image_name)-4] + ".txt"), 'w', encoding="utf-8") as f:
            if len(boxes) > 0:  # 判断是否为空
                # 写入新的label到文件中
                for data in boxes:
                    str_in = ""
                    for i, a in enumerate(data):
                        if i == 0:
                            str_in += str(int(a))
                        else:
                            str_in += " " + str(float(a))
                    f.write(str_in + '\n')
    except:
        print("ERROR: ", image_name, " is bad.")


def runAugumentation(image_path, label_path, save_path):
    image_list = get_image_list(image_path)
    for image_name in image_list:
        print("dealing: " + image_name)
        img = Image.open(os.path.join(image_path, image_name))
        boxes = get_label_file(label_path, image_name)
        boxes = torch.tensor(boxes)
        # 下面是执行的数据增强功能,可自行选择
        # Image类型的参数
        DAD = DataAugmentationOnDetection()

        """ 尺寸变换   """
        # 缩小尺寸
        t_img, t_boxes = DAD.resizeDown_keep_ratio(img, boxes, 1024)
        save_Yolo(t_img, boxes, save_path, prefix="rs_", image_name=image_name)
        # 水平旋转
        t_img, t_boxes = DAD.random_flip_horizon(img, boxes.clone())
        save_Yolo(t_img, t_boxes, save_path, prefix="fh_", image_name=image_name)
        # 竖直旋转
        t_img, t_boxes = DAD.random_flip_vertical(img, boxes.clone())
        save_Yolo(t_img, t_boxes, save_path, prefix="fv_", image_name=image_name)
        # center_crop
        t_img, t_boxes = DAD.center_crop(img, boxes.clone(), 1024)
        save_Yolo(t_img, t_boxes, save_path, prefix="cc_", image_name=image_name)

        """ 图像变换,用tensor类型"""
        to_tensor = transforms.ToTensor()
        to_image = transforms.ToPILImage()
        img = to_tensor(img)

        # random_bright
        t_img, t_boxes = DAD.random_bright(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="rb_", image_name=image_name)
        # random_contrast 对比度变化
        t_img, t_boxes = DAD.random_contrast(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="rc_", image_name=image_name)
        # random_saturation 饱和度变化
        t_img, t_boxes = DAD.random_saturation(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="rs_", image_name=image_name)
        # 高斯噪声
        t_img, t_boxes = DAD.add_gasuss_noise(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="gn_", image_name=image_name)
        # add_salt_noise
        t_img, t_boxes = DAD.add_salt_noise(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="sn_", image_name=image_name)
        # add_pepper_noise
        t_img, t_boxes = DAD.add_pepper_noise(img.clone()), boxes
        save_Yolo(to_image(t_img), boxes, save_path, prefix="pn_", image_name=image_name)

        print("end:     " + image_name)


if __name__ == '__main__':
    # 图像和标签文件夹
    image_path = r"mx_light\img"
    label_path = r"mx_light\labels"
    save_path = r"mx_light\aug_labels"    # 结果保存位置路径,可以是一个不存在的文件夹
    # 运行
    runAugumentation(image_path, label_path, save_path)

三、划分YOLO数据集

代码如下:

import os
import shutil
import random

# 训练集、验证集和测试集的比例分配
test_percent = 0.1
valid_percent = 0.2
train_percent = 0.7

# 标注文件的路径
image_path = r"zsd_wz\aug_labels\images"
label_path = r"zsd_wz\aug_labels\labels"

images_files_list = os.listdir(image_path)
labels_files_list = os.listdir(label_path)
print('images files: {}'.format(images_files_list))
print('labels files: {}'.format(labels_files_list))
total_num = len(images_files_list)
print('total_num: {}'.format(total_num))

test_num = int(total_num * test_percent)
valid_num = int(total_num * valid_percent)
train_num = int(total_num * train_percent)

# 对应文件的索引
test_image_index = random.sample(range(total_num), test_num)
valid_image_index = random.sample(range(total_num), valid_num)
train_image_index = random.sample(range(total_num), train_num)

for i in range(total_num):
    print('src image: {}, i={}'.format(images_files_list[i], i))
    if i in test_image_index:
        # 将图片和标签文件拷贝到对应文件夹下
        shutil.copyfile(r'zsd_wz\aug_labels\images/{}'.format(images_files_list[i]), r'zsd_wz\aug_labels\test/{}'.format(images_files_list[i]))
        shutil.copyfile(r'zsd_wz\aug_labels\labels/{}'.format(labels_files_list[i]), r'zsd_wz\aug_labels\test/{}'.format(labels_files_list[i]))
    elif i in valid_image_index:
        shutil.copyfile(r'zsd_wz\aug_labels\images/{}'.format(images_files_list[i]), r'zsd_wz\aug_labels\val/{}'.format(images_files_list[i]))
        shutil.copyfile(r'D:\beijing_jiebang\zsd_wz\aug_labels\labels/{}'.format(labels_files_list[i]), r'zsd_wz\aug_labels\val/{}'.format(labels_files_list[i]))
    else:
        shutil.copyfile(r'zsd_wz\aug_labels\images/{}'.format(images_files_list[i]), r'zsd_wz\aug_labels\train/{}'.format(images_files_list[i]))
        shutil.copyfile(r'zsd_wz\aug_labels\labels/{}'.format(labels_files_list[i]), r'zsd_wz\aug_labels\train/{}'.format(labels_files_list[i]))


总结

那就这个样子吧,以上代码仅供参考,是整理得来的,方便使用。

标签:random,img,VOC,image,YOLO,boxes,path,一条龙,size
From: https://blog.csdn.net/qq_41813944/article/details/142198493

相关文章

  • 动物目标检测——基于YOLOv5和树莓派4B平台
    目标检测在计算机视觉领域中具有重要意义。YOLOv5(YouOnlyLookOne-level)是目标检测算法中的一种代表性方法,以其高效性和准确性备受关注,并且在各种目标检测任务中都表现出卓越的性能。本文将详细介绍如何在性能更强的计算机上训练YOLOv5模型,并将训练好的模型部署到树莓派4B上,通过......
  • YOLOv8改进 | 模块缝合 | C2f 融合SCConv提升检测性能【CVPR2023】
    秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转......
  • YOLOv8改进 | 模块缝合 | C2f 融合RVB + EMA注意力机制【二次融合 + 结构图】
    秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转......
  • 2025计算机毕设最全个人站点!(选题、开发、部署、讲解 一条龙)
    目录前言我的优势我的个人网站与我合作前言❤️博主简介:全网累计客户1000+,培训机构讲师、全栈开发工程师、知乎/小红书优秀作者、腾讯云/阿里云VIP客户、专注Java、小程序、安卓领域和毕业项目开发❤️服务:本毕设工作室提供无偿选题服务!包括Java、Python、微信小程序......
  • Yolo第Y2周:如何正确解读YOLO算法训练结果的各项指标
    目录Yolo第Y2周:如何正确解读YOLO算法训练结果的各项指标weights文件夹:最终的仙丹results.png:训练总图要略loss系列:打明牌的能力box_loss边界框损失:衡量画框cls_loss分类损失:判断框里的物体dfl_loss分布式焦点损失:精益求精验证集:学得好,不一定考得好精度和召回率:又准又全的考量r......
  • Yolov8 sppf模块
    学习参考:原始SPP及在YOLO中的SPP/SPPF对比详解_sppf和spp-CSDN博客Yolov8中的sppf模块是参考SPPNET中的SPP进行改造先了解SPPNET中的SPP模块: 在这里对特征图进行池化操作,最终和成一个统一大小维度的特征块,其目的主要是为了处理CNN网络中输入图像尺寸大小不一致的问题。再......
  • 工地安全帽识别闸机联动 YOLOv5
    工地安全帽识别闸机联动系统基于人脸识别技术和安全帽反光衣穿戴识别技术,工地安全帽识别闸机联动系统通过对施工人员的人脸、安全帽和反光衣进行识别,判断是否符合安全要求。只有当人脸识别成功且安全帽、反光衣齐全时,闸机才会打开允许施工人员进入工地。工地安全帽识别闸机联动......
  • YOLOv8改进系列,YOLOv8添加DiverseBranchBlock(多样分支块),并在C2f结构引入
    原论文摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练......
  • YOLOv9改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
    一、本文介绍本文记录的是利用DySample上采样对YOLOv9的颈部网络进行改进的方法研究。YOLOv9采用传统的最近邻插值的方法进行上采样可能无法有效地捕捉特征的细节和语义信息,从而影响模型在密集预测任务中的性能。DySample通过动态采样的方式进行上采样,能够更好地处理特征的......