Dim a(560) a(0)="pkn2408290135-100" a(1)="pkn2408290135-101" a(2)="pkn2408290135-102" a(3)="pkn2408290135-103" a(4)="pkn2408290135-104" a(5)="pkn2408290135-105" a(6)="pkn2408290135-106" a(7)="pkn2408290135-107" a(8)="pkn2408290135-108" a(9)="pkn2408290135-109" a(10)="pkn2408290135-110" a(11)="pkn2408290135-111" a(12)="pkn2408290135-112" a(13)="pkn2408290135-113" a(14)="pkn2408290135-114" a(15)="pkn2408290135-115" a(16)="pkn2408290135-116" a(17)="pkn2408290135-117" a(18)="pkn2408290135-118" a(19)="pkn2408290135-119" a(20)="pkn2408290135-120" a(21)="pkn2408290135-121" a(22)="pkn2408290135-122" a(23)="pkn2408290135-123" a(24)="pkn2408290135-124" a(25)="pkn2408290135-125" a(26)="pkn2408290135-126" a(27)="pkn2408290135-127" a(28)="pkn2408290135-128" a(29)="pkn2408290135-129" a(30)="pkn2408290135-130" a(31)="pkn2408290135-131" a(32)="pkn2408290135-132" a(33)="pkn2408290135-133" a(34)="pkn2408290135-134" a(35)="pkn2408290135-135" a(36)="pkn2408290135-136" a(37)="pkn2408290135-137" a(38)="pkn2408290135-138" a(39)="pkn2408290135-139" a(40)="pkn2408290135-140" a(41)="pkn2408290135-141" a(42)="pkn2408290135-142" a(43)="pkn2408290135-143" a(44)="pkn2408290135-144" a(45)="pkn2408290135-145" a(46)="pkn2408290135-146" a(47)="pkn2408290135-147" a(48)="pkn2408290135-148" a(49)="pkn2408290135-149" a(50)="pkn2408290135-150" a(51)="pkn2408290135-151" a(52)="pkn2408290135-152" a(53)="pkn2408290135-153" a(54)="pkn2408290135-154" a(55)="pkn2408290135-155" a(56)="pkn2408290135-156" a(57)="pkn2408290135-157" a(58)="pkn2408290135-158" a(59)="pkn2408290135-159" a(60)="pkn2408290135-160" a(61)="pkn2408290135-161" a(62)="pkn2408290135-162" a(63)="pkn2408290135-163" a(64)="pkn2408290135-164" a(65)="pkn2408290135-165" a(66)="pkn2408290135-166" a(67)="pkn2408290135-167" a(68)="pkn2408290135-168" a(69)="pkn2408290135-169" a(70)="pkn2408290135-170" a(71)="pkn2408290135-171" a(72)="pkn2408290135-172" a(73)="pkn2408290135-173" a(74)="pkn2408290135-174" a(75)="pkn2408290135-175" a(76)="pkn2408290135-176" a(77)="pkn2408290135-177" a(78)="pkn2408290135-178" a(79)="pkn2408290135-179" a(80)="pkn2408290135-180" a(81)="pkn2408290135-181" a(82)="pkn2408290135-182" a(83)="pkn2408290135-183" a(84)="pkn2408290135-184" a(85)="pkn2408290135-185" a(86)="pkn2408290135-186" a(87)="pkn2408290135-187" a(88)="pkn2408290135-188" a(89)="pkn2408290135-189" a(90)="pkn2408290135-190" a(91)="pkn2408290135-191" a(92)="pkn2408290135-192" a(93)="pkn2408290135-193" a(94)="pkn2408290135-194" a(95)="pkn2408290135-195" a(96)="pkn2408290135-196" a(97)="pkn2408290135-197" a(98)="pkn2408290135-198" a(99)="pkn2408290135-199" a(100)="pkn2408290135-200" a(101)="pkn2408290135-201" a(102)="pkn2408290135-202" a(103)="pkn2408290135-203" a(104)="pkn2408290135-204" a(105)="pkn2408290135-205" a(106)="pkn2408290135-206" a(107)="pkn2408290135-207" a(108)="pkn2408290135-208" a(109)="pkn2408290135-209" a(110)="pkn2408290135-210" a(111)="pkn2408290135-211" a(112)="pkn2408290135-212" a(113)="pkn2408290135-213" a(114)="pkn2408290135-214" a(115)="pkn2408290135-215" a(116)="pkn2408290135-216" a(117)="pkn2408290135-217" a(118)="pkn2408290135-218" a(119)="pkn2408290135-219" a(120)="pkn2408290135-220" a(121)="pkn2408290135-221" a(122)="pkn2408290135-222" a(123)="pkn2408290135-223" a(124)="pkn2408290135-224" a(125)="pkn2408290135-225" a(126)="pkn2408290135-226" a(127)="pkn2408290135-227" a(128)="pkn2408290135-228" a(129)="pkn2408290135-229" a(130)="pkn2408290135-230" a(131)="pkn2408290135-231" a(132)="pkn2408290135-232" a(133)="pkn2408290135-233" a(134)="pkn2408290135-234" a(135)="pkn2408290135-235" a(136)="pkn2408290135-236" a(137)="pkn2408290135-237" a(138)="pkn2408290135-238" a(139)="pkn2408290135-239" a(140)="pkn2408290135-240" a(141)="pkn2408290135-241" a(142)="pkn2408290135-242" a(143)="pkn2408290135-243" a(144)="pkn2408290135-244" a(145)="pkn2408290135-245" a(146)="pkn2408290135-246" a(147)="pkn2408290135-247" a(148)="pkn2408290135-248" a(149)="pkn2408290135-249" a(150)="pkn2408290135-250" a(151)="pkn2408290135-251" a(152)="pkn2408290135-252" a(153)="pkn2408290135-253" a(154)="pkn2408290135-254" a(155)="pkn2408290135-255" a(156)="pkn2408290135-256" a(157)="pkn2408290135-257" a(158)="pkn2408290135-258" a(159)="pkn2408290135-259" a(160)="pkn2408290135-260" a(161)="pkn2408290135-261" a(162)="pkn2408290135-262" a(163)="pkn2408290135-263" a(164)="pkn2408290135-264" a(165)="pkn2408290135-265" a(166)="pkn2408290135-266" a(167)="pkn2408290135-267" a(168)="pkn2408290135-268" a(169)="pkn2408290135-269" a(170)="pkn2408290135-270" a(171)="pkn2408290135-271" a(172)="pkn2408290135-272" a(173)="pkn2408290135-273" a(174)="pkn2408290135-274" a(175)="pkn2408290135-275" a(176)="pkn2408290135-276" a(177)="pkn2408290135-277" a(178)="pkn2408290135-278" a(179)="pkn2408290135-279" a(180)="pkn2408290135-280" a(181)="pkn2408290135-281" a(182)="pkn2408290135-282" a(183)="pkn2408290135-283" a(184)="pkn2408290135-284" a(185)="pkn2408290135-285" a(186)="pkn2408290135-286" a(187)="pkn2408290135-287" a(188)="pkn2408290135-288" a(189)="pkn2408290135-289" a(190)="pkn2408290135-290" a(191)="pkn2408290135-291" a(192)="pkn2408290135-292" a(193)="pkn2408290135-293" a(194)="pkn2408290135-294" a(195)="pkn2408290135-295" a(196)="pkn2408290135-296" a(197)="pkn2408290135-297" a(198)="pkn2408290135-298" a(199)="pkn2408290135-299" a(200)="pkn2408290135-300" a(201)="pkn2408290135-301" a(202)="pkn2408290135-302" a(203)="pkn2408290135-303" a(204)="pkn2408290135-304" a(205)="pkn2408290135-305" a(206)="pkn2408290135-306" a(207)="pkn2408290135-307" a(208)="pkn2408290135-308" a(209)="pkn2408290135-309" a(210)="pkn2408290135-310" a(211)="pkn2408290135-311" a(212)="pkn2408290135-312" a(213)="pkn2408290135-313" a(214)="pkn2408290135-314" a(215)="pkn2408290135-315" a(216)="pkn2408290135-316" a(217)="pkn2408290135-317" a(218)="pkn2408290135-318" a(219)="pkn2408290135-319" a(220)="pkn2408290135-320" a(221)="pkn2408290135-321" a(222)="pkn2408290135-322" a(223)="pkn2408290135-323" a(224)="pkn2408290135-324" a(225)="pkn2408290135-325" a(226)="pkn2408290135-326" a(227)="pkn2408290135-327" a(228)="pkn2408290135-328" a(229)="pkn2408290135-329" a(230)="pkn2408290135-330" a(231)="pkn2408290135-331" a(232)="pkn2408290135-332" a(233)="pkn2408290135-333" a(234)="pkn2408290135-334" a(235)="pkn2408290135-335" a(236)="pkn2408290135-336" a(237)="pkn2408290135-337" a(238)="pkn2408290135-338" a(239)="pkn2408290135-339" a(240)="pkn2408290135-340" a(241)="pkn2408290135-341" a(242)="pkn2408290135-342" a(243)="pkn2408290135-343" a(244)="pkn2408290135-344" a(245)="pkn2408290135-345" a(246)="pkn2408290135-346" a(247)="pkn2408290135-347" a(248)="pkn2408290135-348" a(249)="pkn2408290135-349" a(250)="pkn2408290135-350" a(251)="pkn2408290135-351" a(252)="pkn2408290135-352" a(253)="pkn2408290135-353" a(254)="pkn2408290135-354" a(255)="pkn2408290135-355" a(256)="pkn2408290135-356" a(257)="pkn2408290135-357" a(258)="pkn2408290135-358" a(259)="pkn2408290135-359" a(260)="pkn2408290135-360" a(261)="pkn2408290135-361" a(262)="pkn2408290135-362" a(263)="pkn2408290135-363" a(264)="pkn2408290135-364" a(265)="pkn2408290135-365" a(266)="pkn2408290135-366" a(267)="pkn2408290135-367" a(268)="pkn2408290135-368" a(269)="pkn2408290135-369" a(270)="pkn2408290135-370" a(271)="pkn2408290135-371" a(272)="pkn2408290135-372" a(273)="pkn2408290135-373" a(274)="pkn2408290135-374" a(275)="pkn2408290135-375" a(276)="pkn2408290135-376" a(277)="pkn2408290135-377" a(278)="pkn2408290135-378" a(279)="pkn2408290135-379" a(280)="pkn2408290135-380" a(281)="pkn2408290135-381" a(282)="pkn2408290135-382" a(283)="pkn2408290135-383" a(284)="pkn2408290135-384" a(285)="pkn2408290135-385" a(286)="pkn2408290135-386" a(287)="pkn2408290135-387" a(288)="pkn2408290135-388" a(289)="pkn2408290135-389" a(290)="pkn2408290135-390" a(291)="pkn2408290135-391" a(292)="pkn2408290135-392" a(293)="pkn2408290135-393" a(294)="pkn2408290135-394" a(295)="pkn2408290135-395" a(296)="pkn2408290135-396" a(297)="pkn2408290135-397" a(298)="pkn2408290135-398" a(299)="pkn2408290135-399" a(300)="pkn2408290135-400" a(301)="pkn2408290135-401" a(302)="pkn2408290135-402" a(303)="pkn2408290135-403" a(304)="pkn2408290135-404" a(305)="pkn2408290135-405" a(306)="pkn2408290135-406" a(307)="pkn2408290135-407" a(308)="pkn2408290135-408" a(309)="pkn2408290135-409" a(310)="pkn2408290135-410" a(311)="pkn2408290135-411" a(312)="pkn2408290135-412" a(313)="pkn2408290135-413" a(314)="pkn2408290135-414" a(315)="pkn2408290135-415" a(316)="pkn2408290135-416" a(317)="pkn2408290135-417" a(318)="pkn2408290135-418" a(319)="pkn2408290135-419" a(320)="pkn2408290135-420" a(321)="pkn2408290135-421" a(322)="pkn2408290135-422" a(323)="pkn2408290135-423" a(324)="pkn2408290135-424" a(325)="pkn2408290135-425" a(326)="pkn2408290135-426" a(327)="pkn2408290135-427" a(328)="pkn2408290135-428" a(329)="pkn2408290135-429" a(330)="pkn2408290135-430" a(331)="pkn2408290135-431" a(332)="pkn2408290135-432" a(333)="pkn2408290135-433" a(334)="pkn2408290135-434" a(335)="pkn2408290135-435" a(336)="pkn2408290135-436" a(337)="pkn2408290135-437" a(338)="pkn2408290135-438" a(339)="pkn2408290135-439" a(340)="pkn2408290135-440" a(341)="pkn2408290135-441" a(342)="pkn2408290135-442" a(343)="pkn2408290135-443" a(344)="pkn2408290135-444" a(345)="pkn2408290135-445" a(346)="pkn2408290135-446" a(347)="pkn2408290135-447" a(348)="pkn2408290135-448" a(349)="pkn2408290135-449" a(350)="pkn2408290135-450" a(351)="pkn2408290135-451" a(352)="pkn2408290135-452" a(353)="pkn2408290135-453" a(354)="pkn2408290135-454" a(355)="pkn2408290135-455" a(356)="pkn2408290135-456" a(357)="pkn2408290135-457" a(358)="pkn2408290135-458" a(359)="pkn2408290135-459" a(360)="pkn2408290135-460" a(361)="pkn2408290135-461" a(362)="pkn2408290135-462" a(363)="pkn2408290135-463" a(364)="pkn2408290135-464" a(365)="pkn2408290135-465" a(366)="pkn2408290135-466" a(367)="pkn2408290135-467" a(368)="pkn2408290135-468" a(369)="pkn2408290135-469" a(370)="pkn2408290135-470" a(371)="pkn2408290135-471" a(372)="pkn2408290135-472" a(373)="pkn2408290135-473" a(374)="pkn2408290135-474" a(375)="pkn2408290135-475" a(376)="pkn2408290135-476" a(377)="pkn2408290135-477" a(378)="pkn2408290135-478" a(379)="pkn2408290135-479" a(380)="pkn2408290135-480" a(381)="pkn2408290135-481" a(382)="pkn2408290135-482" a(383)="pkn2408290135-483" a(384)="pkn2408290135-484" a(385)="pkn2408290135-485" a(386)="pkn2408290135-486" a(387)="pkn2408290135-487" a(388)="pkn2408290135-488" a(389)="pkn2408290135-489" a(390)="pkn2408290135-490" a(391)="pkn2408290135-491" a(392)="pkn2408290135-492" a(393)="pkn2408290135-493" a(394)="pkn2408290135-494" a(395)="pkn2408290135-495" a(396)="pkn2408290135-496" a(397)="pkn2408290135-497" a(398)="pkn2408290135-498" a(399)="pkn2408290135-499" a(400)="pkn2408290135-500" a(401)="pkn2408290135-501" a(402)="pkn2408290135-502" a(403)="pkn2408290135-503" a(404)="pkn2408290135-504" a(405)="pkn2408290135-505" a(406)="pkn2408290135-506" a(407)="pkn2408290135-507" a(408)="pkn2408290135-508" a(409)="pkn2408290135-509" a(410)="pkn2408290135-510" a(411)="pkn2408290135-511" a(412)="pkn2408290135-512" a(413)="pkn2408290135-513" a(414)="pkn2408290135-514" a(415)="pkn2408290135-515" a(416)="pkn2408290135-516" a(417)="pkn2408290135-517" a(418)="pkn2408290135-518" a(419)="pkn2408290135-519" a(420)="pkn2408290135-520" a(421)="pkn2408290135-521" a(422)="pkn2408290135-522" a(423)="pkn2408290135-523" a(424)="pkn2408290135-524" a(425)="pkn2408290135-525" a(426)="pkn2408290135-526" a(427)="pkn2408290135-527" a(428)="pkn2408290135-528" a(429)="pkn2408290135-529" a(430)="pkn2408290135-530" a(431)="pkn2408290135-531" a(432)="pkn2408290135-532" a(433)="pkn2408290135-533" a(434)="pkn2408290135-534" a(435)="pkn2408290135-535" a(436)="pkn2408290135-536" a(437)="pkn2408290135-537" a(438)="pkn2408290135-538" a(439)="pkn2408290135-539" a(440)="pkn2408290135-540" a(441)="pkn2408290135-541" a(442)="pkn2408290135-542" a(443)="pkn2408290135-543" a(444)="pkn2408290135-544" a(445)="pkn2408290135-545" a(446)="pkn2408290135-546" a(447)="pkn2408290135-547" a(448)="pkn2408290135-548" a(449)="pkn2408290135-549" a(450)="pkn2408290135-550" a(451)="pkn2408290135-551" a(452)="pkn2408290135-552" a(453)="pkn2408290135-553" a(454)="pkn2408290135-554" a(455)="pkn2408290135-555" a(456)="pkn2408290135-556" a(457)="pkn2408290135-557" a(458)="pkn2408290135-558" a(459)="pkn2408290135-559" a(460)="pkn2408290135-560" a(461)="pkn2408290135-561" a(462)="pkn2408290135-562" a(463)="pkn2408290135-563" a(464)="pkn2408290135-564" a(465)="pkn2408290135-565" a(466)="pkn2408290135-566" a(467)="pkn2408290135-567" a(468)="pkn2408290135-568" a(469)="pkn2408290135-569" a(470)="pkn2408290135-570" a(471)="pkn2408290135-571" a(472)="pkn2408290135-572" a(473)="pkn2408290135-573" a(474)="pkn2408290135-574" a(475)="pkn2408290135-575" a(476)="pkn2408290135-576" a(477)="pkn2408290135-577" a(478)="pkn2408290135-578" a(479)="pkn2408290135-579" a(480)="pkn2408290135-580" a(481)="pkn2408290135-581" a(482)="pkn2408290135-582" a(483)="pkn2408290135-583" a(484)="pkn2408290135-584" a(485)="pkn2408290135-585" a(486)="pkn2408290135-586" a(487)="pkn2408290135-587" a(488)="pkn2408290135-588" a(489)="pkn2408290135-589" a(490)="pkn2408290135-590" a(491)="pkn2408290135-591" a(492)="pkn2408290135-592" a(493)="pkn2408290135-593" a(494)="pkn2408290135-594" a(495)="pkn2408290135-595" a(496)="pkn2408290135-596" a(497)="pkn2408290135-597" a(498)="pkn2408290135-598" a(499)="pkn2408290135-599" a(500)="pkn2408290135-600" a(501)="pkn2408290135-601" a(502)="pkn2408290135-602" a(503)="pkn2408290135-603" a(504)="pkn2408290135-604" a(505)="pkn2408290135-605" a(506)="pkn2408290135-606" a(507)="pkn2408290135-607" a(508)="pkn2408290135-608" a(509)="pkn2408290135-609" a(510)="pkn2408290135-610" a(511)="pkn2408290135-611" a(512)="pkn2408290135-612" a(513)="pkn2408290135-613" a(514)="pkn2408290135-614" a(515)="pkn2408290135-615" a(516)="pkn2408290135-616" a(517)="pkn2408290135-617" a(518)="pkn2408290135-618" a(519)="pkn2408290135-619" a(520)="pkn2408290135-620" a(521)="pkn2408290135-621" a(522)="pkn2408290135-622" a(523)="pkn2408290135-623" a(524)="pkn2408290135-624" a(525)="pkn2408290135-625" a(526)="pkn2408290135-626" a(527)="pkn2408290135-627" a(528)="pkn2408290135-628" a(529)="pkn2408290135-629" a(530)="pkn2408290135-630" a(531)="pkn2408290135-631" a(532)="pkn2408290135-632" a(533)="pkn2408290135-633" a(534)="pkn2408290135-634" a(535)="pkn2408290135-635" a(536)="pkn2408290135-636" a(537)="pkn2408290135-637" a(538)="pkn2408290135-638" a(539)="pkn2408290135-639" a(540)="pkn2408290135-640" a(541)="pkn2408290135-641" a(542)="pkn2408290135-642" a(543)="pkn2408290135-643" a(544)="pkn2408290135-644" a(545)="pkn2408290135-645" a(546)="pkn2408290135-646" a(547)="pkn2408290135-647" a(548)="pkn2408290135-648" a(549)="pkn2408290135-649" a(550)="pkn2408290135-650" a(551)="pkn2408290135-651" a(552)="pkn2408290135-652" a(553)="pkn2408290135-653" a(554)="pkn2408290135-654" a(555)="pkn2408290135-655" a(556)="pkn2408290135-656" a(557)="pkn2408290135-657" a(558)="pkn2408290135-658" a(559)="pkn2408290135-659" For i=0 To 559 Delay 0 SayString a(i) KeyPress "Enter", 1 Next
标签:559,pkn2408290135,代码,数据录入,346,344,345,按键精灵,347 From: https://www.cnblogs.com/gethub/p/18403203