首页 > 其他分享 >YOLOv8改进 | 注意力篇 | YOLOv8引入YOLO-Face提出的SEAM注意力机制优化物体遮挡检测

YOLOv8改进 | 注意力篇 | YOLOv8引入YOLO-Face提出的SEAM注意力机制优化物体遮挡检测

时间:2024-09-06 12:49:35浏览次数:13  
标签:Loss 检测器 YOLO YOLOv8 人脸 SEAM 注意力

1. SEAM介绍

1.1  摘要:近年来,基于深度学习的人脸检测算法取得了长足的进步。 这些算法通常可以分为两类,即像 Faster R-CNN 这样的两级检测器和像 YOLO 这样的一级检测器。 由于精度和速度之间具有更好的平衡,一级探测器已广泛应用于许多应用中。 在本文中,我们提出了一种基于单级检测器YOLOv5的实时人脸检测器,命名为YOLO-FaceV2。 我们设计了一个称为 RFE 的感受野增强模块来增强小脸的感受野,并使用 NWD Loss 来弥补 IoU 对微小物体位置偏差的敏感性。 对于人脸遮挡,我们提出了一个名为 SEAM 的注意力模块,并引入 Repulsion Loss 来解决它。 此外,我们使用权重函数Slide来解决简单样本和困难样本之间的不平衡,并使用有效感受野的信息来设计锚点。 WiderFace 数据集上的实验结果表明,我们的人脸检测器优于 YOLO,并且它的变体可以在所有简单、中等和困难子集中找到。

官方论文地址:https://arxiv.org/pdf/2208.02019

官方代码地址:https://github.com/Krasjet-Yu/YOLO-FaceV2

1.2  简单介绍:  

S

标签:Loss,检测器,YOLO,YOLOv8,人脸,SEAM,注意力
From: https://blog.csdn.net/tsg6698/article/details/141907469

相关文章

  • 逐行讲解Transformer的代码实现和原理讲解:多头掩码注意力机制
    视频详细讲解(一行一行代码讲解实现过程):逐行讲解Transformer的代码实现和原理讲解:多头掩码注意力机制(1)_哔哩哔哩_bilibili1多头掩码注意力机制总体流程【总体流程图说明】【12个块】【多头掩码注意力机制公式】【计算公式对应的步骤】2向量相似度计算2.1点积向......
  • yolov5单目测距+速度测量+目标跟踪
    要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像......
  • Falcon Mamba: 首个高效的无注意力机制 7B 模型
    FalconMamba是由阿布扎比的TechnologyInnovationInstitute(TII)开发并基于TIIFalconMamba7BLicense1.0的开放获取模型。该模型是开放获取的,所以任何人都可以在HuggingFace生态系统中这里使用它进行研究或应用。在这篇博客中,我们将深入模型的设计决策、探究模......
  • YOLOv8 detect person only
    demo.pyfromioimportBytesIOfrompathlibimportPath#pipinstallopencv-pythonpillowultralyticsimportcv2fromPILimportImagefromultralyticsimportYOLO#type:ignore[import-untyped]filename="test.jpg"model=YOLO("yolov......
  • YOLOv8改进 | 注意力篇 | YOLOv8引入MSCAAttention(MSCA)注意力机制
    1. MSCA介绍1.1 摘要:我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。由于自注意力在编码空间信息方面的效率,最近基于变压器的模型在语义分割领域占据了主导地位。在本文中,我们证明卷积注意力是一种比Transformer中的自注意力机制更高效、更有效的编码上下文......
  • Yolov8-源码解析-四十-
    Yolov8源码解析(四十).\yolov8\ultralytics\utils\benchmarks.py#从glob模块中导入glob函数,用于文件路径的模糊匹配importglob#导入os模块,提供了许多与操作系统交互的函数importos#导入platform模块,用于获取系统平台信息importplatform#导入re模块,支持正......
  • Yolov8-源码解析-五-
    Yolov8源码解析(五)comments:truedescription:LearnhowtorunYOLOv8onAzureML.QuickstartinstructionsforterminalandnotebookstoharnessAzure'scloudcomputingforefficientmodeltraining.keywords:YOLOv8,AzureML,machinelearning,cloudcom......
  • YOLOv8改进:CA注意力机制【注意力系列篇】(附详细的修改步骤,以及代码,CA目标检测效果由
    如果实验环境尚未搭建成功,可以参考这篇文章->【YOLOv8超详细环境搭建以及模型训练(GPU版本)】文章链接为:http://t.csdnimg.cn/8ZmAm---------------------------------------------------------------------------​------------------------------------------------------1......
  • Yolov8-源码解析-十二-
    Yolov8源码解析(十二)comments:truedescription:LearntosimplifytheloggingofYOLOv8trainingwithCometML.Thisguidecoversinstallation,setup,real-timeinsights,andcustomlogging.keywords:YOLOv8,CometML,logging,machinelearning,training,mo......
  • Yolov8-源码解析-十-
    Yolov8源码解析(十)comments:truedescription:Learnhowtoensurethread-safeYOLOmodelinferenceinPython.Avoidraceconditionsandrunyourmulti-threadedtasksreliablywithbestpractices.keywords:YOLOmodels,thread-safe,Pythonthreading,modeli......